Full Text

Turn on search term navigation

© 2019 van den Brand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rationale & objective

Early prediction of chronic kidney disease (CKD) progression to end-stage kidney disease (ESKD) currently use Cox models including baseline estimated glomerular filtration rate (eGFR) only. Alternative approaches include a Cox model that includes eGFR slope determined over a baseline period of time, a Cox model with time varying GFR, or a joint modeling approach. We studied if these more complex approaches may further improve ESKD prediction.

Study design

Prospective cohort.

Setting & participants

We re-used data from two CKD cohorts including patients with baseline eGFR >30ml/min per 1.73m2. MASTERPLAN (N = 505; 55 ESKD events) was used as development dataset, and NephroTest (N = 1385; 72 events) for validation.

Predictors

All models included age, sex, eGFR, and albuminuria, known prognostic markers for ESKD.

Analytical approach

We trained the models on the MASTERPLAN data and determined discrimination and calibration for each model at 2 years follow-up for a prediction horizon of 2 years in the NephroTest cohort. We benchmarked the predictive performance against the Kidney Failure Risk Equation (KFRE).

Results

The C-statistics for the KFRE was 0.94 (95%CI 0.86 to 1.01). Performance was similar for the Cox model with time-varying eGFR (0.92 [0.84 to 0.97]), eGFR (0.95 [0.90 to 1.00]), and the joint model 0.91 [0.87 to 0.96]). The Cox model with eGFR slope showed the best calibration.

Conclusion

In the present studies, where the outcome was rare and follow-up data was highly complete, the joint models did not offer improvement in predictive performance over more traditional approaches such as a survival model with time-varying eGFR, or a model with eGFR slope.

Details

Title
Predicting kidney failure from longitudinal kidney function trajectory: A comparison of models
Author
Jan A J G van den Brand; Dijkstra, Tjeerd M H; Wetzels, Jack; Stengel, Bénédicte; Metzger, Marie; Blankestijn, Peter J; Hiddo J Lambers Heerspink; Gansevoort, Ron T
First page
e0216559
Section
Research Article
Publication year
2019
Publication date
May 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2222682662
Copyright
© 2019 van den Brand et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.