It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The use of voltage-controlled magnetic anisotropy (VCMA) via the creation of a sloped electric field has been hailed as an energy-efficient approach for domain wall (DW) propagation. However, this method suffers from a limitation of the nanowire length which the DW can propagate on. Here, we propose the use of multiplexed gate electrodes to propagate DWs on magnetic nanowires without having any length constraints. The multi-gate electrode configuration is demonstrated using micromagnetic simulations. This allows controllable voltages to be applied to neighboring gate electrodes, generating large strength of magnetic anisotropy gradients along the nanowire, and the results show that DW velocities higher than 300 m/s can be achieved. Analysis of the DW dynamics during propagation reveals that the tilt of the DW and the direction of slanted gate electrode greatly alters the steady state DW propagation. Our results show that chevron-shaped gate electrodes is an effective optimisation that leads to multi-DW propagation with high velocity. Moreover, a repeating series of high-medium-low magnetic anisotropy regions enables a deterministic VCMA-controlled high velocity DW propagation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361); GLOBALFOUNDRIES Singapore Pte, Ltd., Singapore, Singapore (GRID:grid.472848.5)
2 Nanyang Technological University, School of Physical and Mathematical Sciences, Singapore, Singapore (GRID:grid.59025.3b) (ISNI:0000 0001 2224 0361)
3 GLOBALFOUNDRIES Singapore Pte, Ltd., Singapore, Singapore (GRID:grid.472848.5)