Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose: The antioxidant resveratrol (RSV) has low bioavailability and can reach the colon to access the gut microbial ecosystem. RSV administration together with high-fat diet prevented abnormal changes of intestinal microbiota. However, whether or not RSV can reshape the intestinal microbiota of obese mice and alleviate obesity-related diseases remains to be studied. This study aimed to explore the role of RSV in alleviating high-fat-induced obesity and its relationship with oxidative stress and gut microbiota.

Methods: Male C57BL/6 mice were divided into five groups and administered for 16 weeks with: standard diet (CON), high-fat diet (60% energy for lard, HFD), and HFD with low, medium, and high dose of RSV, 50, 75, and 100 mg/kg body weight administered daily via drinking water, respectively.

Results: Medium and high RSV treatment significantly prevented body weight gain, decreased relative weight of liver and adipose tissue compared with HFD (P<0.05). All doses significantly prevented HFD-induced increase of serum triglyceride, low density lipoprotein cholesterol, glucose, and endotoxemia (P<0.05). Medium and high dose also prevented chronic inflammation by decreasing serum interleukin-1 and tumor necrosis factor-alpha (P<0.05), and oxidative stress in liver and brain indicated by increase in superoxide dismutase, catalase, glutathione peroxidase activity (P<0.05). Formation of malondialdehyde was prevented by all doses compared with HFD (P<0.05). Both medium and high doses of RES increased alpha diversity of gut microbiota according to the Chao1 and Shannon indices (P<0.05). Medium dose induced obvious shift in gut microbiota composition according to principal component analysis. High dose of RSV effectively prevented HFD-induced increase of Coriobacteriaceae and Desulfovibrionaceae (P<0.05), which show a significant correlation with body weight (r>0.8 P<0.00).

Conclusion: RSV prevented HFD-induced endotoxemia, oxidative stress, and gut microbiota change.

Details

Title
Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
Author
Campbell, C Linda; Yu, Renqiang; Li, Fengzhi; Zhou, Qin; Chen, Daozhen; Qi, Ce; Yin, Yongxiang; Sun, Jin
Pages
97-107
Section
Original Research
Publication year
2019
Publication date
2019
Publisher
Taylor & Francis Ltd.
e-ISSN
1178-7007
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2225786499
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.