It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Environmental risk of single-walled carbon nanotubes (SWCNTs) is receiving increasing attentions owing to their wide study and application. However, little is known on the influence of length and functional groups on SWCNT cytotoxicity. In this study, six types of SWCNTs with different functional groups (pristine, carboxyl group and hydroxyl group) and lengths (1–3 μm and 5–30 μm) were chosen. Cytotoxicities in human hepatoma HepG2 cells induced by these SWCNTs were compared based on cell viability, oxidative stress, plasma membrane fluidity and ABC transporter activity assays. Results showed that all the SWCNTs decreased cell viability of HepG2, increased intracellular reactive oxygen species (ROS) level, and damaged plasma membrane in a concentration-dependent manner. Long SWCNTs had stronger cytotoxic effects than short SWCNTs, which might be due to weaker aggregation for the long SWCNTs. Functionalization changed the toxic effects of the SWCNTs, and different influence was found between long SWCNTs and short SWCNTs. Moreover, the six types of SWCNTs at low concentrations changed plasma membrane fluidity, inhibited transmembrane ABC transporter (efflux pump) activity, and acted as chemosensitizer to improve the sensitivity of cells to arsenic, indicating the chemosensitive effect should be considered as toxic endpoint of SWCNTs. Comparison of different toxic endpoints among the six types of SWCNTs showed that short hydroxyl-SWCNT might be safer than other SWCNTs. This study provides insights into toxicities of SWCNTs, which is of great value for the risk assessment and application of SWCNTs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer