It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
A classification tree model (CT-PIRP) was developed in 2013 to predict the annual renal function decline of patients with chronic kidney disease (CKD) participating in the PIRP (Progetto Insufficienza Renale Progressiva) project, which involves thirteen Nephrology Hospital Units in Emilia-Romagna (Italy). This model identified seven subgroups with specific combinations of baseline characteristics that were associated with a differential estimated glomerular filtration rate (eGFR) annual decline, but the model’s ability to predict mortality and renal replacement therapy (RRT) has not been established yet.
Methods
Survival analysis was used to determine whether CT-PIRP subgroups identified in the derivation cohort (n = 2265) had different mortality and RRT risks. Temporal validation was performed in a matched cohort (n = 2051) of subsequently enrolled PIRP patients, in which discrimination and calibration were assessed using Kaplan-Meier survival curves, Cox regression and Fine & Gray competing risk modeling.
Results
In both cohorts mortality risk was higher for subgroups 3 (proteinuric, low eGFR, high serum phosphate) and lower for subgroups 1 (proteinuric, high eGFR), 4 (non-proteinuric, younger, non-diabetic) and 5 (non-proteinuric, younger, diabetic). Risk of RRT was higher for subgroups 3 and 2 (proteinuric, low eGFR, low serum phosphate), while subgroups 1, 6 (non-proteinuric, old females) and 7 (non-proteinuric, old males) showed lower risk. Calibration was excellent for mortality in all subgroups while for RRT it was overall good except in subgroups 4 and 5.
Conclusions
The CT-PIRP model is a temporally validated prediction tool for mortality and RRT, based on variables routinely collected, that could assist decision-making regarding the treatment of incident CKD patients. External validation in other CKD populations is needed to determine its generalizability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer