It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Genome-wide association studies (GWAS) have identified many genetic variants in genes related to lipid metabolism. However, how these variations affect lipid levels remains elusive. Long non-coding RNAs (lncRNAs) have been implicated in a variety of biological processes. We hypothesize lncRNAs are likely to be located within disease or trait-associated DNA regions to regulate lipid metabolism. The aim of this study was to investigate whether and how lncRNAs in lipid- associated DNA regions regulate cholesterol homeostasis in hepatocytes. In this study, we identified a novel long non-coding RNA in Lipid Associated Single nucleotide polymorphism gEne Region (LASER) by bioinformatic analysis. We report that LASER is highly expressed in both hepatocytes and peripheral mononuclear cells (PBMCs). Clinical studies showed that LASER expression is positively related with that of cholesterol containing apolipoprotein levels. In particular, we found that LASER is positively correlated with plasma PCSK9 levels in statin free patients. siRNAs mediated knock down of LASER dramatically reduces intracellular cholesterol levels and affects the expression of genes involved in cholesterol metabolism. Transcriptome analyses show that knockdown of LASER affects the expression of genes involved in metabolism pathways. We found that HNF-1α and PCSK9 were reduced after LASER knock-down. Interestingly, the reduction of PCSK9 can be blocked by the treatment of berberine, a natural cholesterol-lowering compound which functions as a HNF-1α antagonist. Mechanistically, we found that LASER binds to LSD1 (lysine-specific demethylase 1), a member of CoREST/REST complex, in nucleus. LASER knock-down enhance LSD1 targeting to genomic loci, resulting in decreased histone H3 lysine 4 mono-methylation at the promoter regions of HNF-1α gene. Conversely, LSD1 knock-down abolished the effect of LASER on HNF-1α and PCSK9 expressions. Finally, we found that statin treatment increased LASER expression, accompanied with increased PCSK9 expression, suggesting a feedback regulation of cholesterol on LASER expression. This observation may partly explain the statin escape during anti-cholesterol treatment. These findings identified a novel lncRNA in cholesterol homeostasis. Therapeutic targeting LASER might be an effective approach to augment the effect of statins on cholesterol levels in clinics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Third Military Medical University, Department of Cardiology, Daping Hospital, Chongqing, P.R. China (GRID:grid.410570.7) (ISNI:0000 0004 1760 6682); Chongqing Institute of Cardiology, Chongqing, P.R. China (GRID:grid.410570.7) (ISNI:0000 0004 1760 6682)
2 The Third Military Medical University, Department of Pediatrics, Daping Hospital, Chongqing, P.R. China (GRID:grid.410570.7) (ISNI:0000 0004 1760 6682)
3 The Third Military Medical University, Department of Respiration, Xinqiao Hospital, Chongqing, P.R. China (GRID:grid.410570.7) (ISNI:0000 0004 1760 6682)
4 Harvard Medical School, Department of Cardiology, Boston Children’s Hospital, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X)