It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A central problem in speciation is the origin and mechanisms of reproductive barriers that block gene flow between sympatric populations. Wind-pollinated plant species that flower in synchrony with one another rely on post-pollination interactions to maintain reproductive isolation. In some locations in Mexico, sympatric populations of domesticated maize and annual teosinte grow in intimate associate and flower synchronously, but rarely produce hybrids. This trait is typically conferred by a single haplotype, Teosinte crossing barrier1-s. Here, we show that the Teosinte crossing barrier1-s haplotype contains a pistil-expressed, potential speciation gene, encoding a pectin methylesterase homolog. The modification of the pollen tube cell wall by the pistil, then, is likely a key mechanism for pollen rejection in Zea and may represent a general mechanism for reproductive isolation in grasses.
Domesticated maize and some varieties of wild teosinte grow in close proximity in parts of Mexico but rarely cross-fertilize. Here the authors show that a pistil-expressed pectin methylesterase, encoded by a gene within the Teosinte crossing barrier1-s haplotype, prevents fertilization of these teosintes by incompatible pollen.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Carnegie Institution for Science, Department of Plant Biology, Stanford, USA (GRID:grid.418000.d) (ISNI:0000 0004 0618 5819)
2 University of Wisconsin, Laboratory of Genetics, Madison, USA (GRID:grid.28803.31) (ISNI:0000 0001 0701 8607)