It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Next-generation stimuli–responsive materials must be configured with local computational ability so that instead of a discrete on-off responsiveness, they sense, process and interact reciprocally with environmental stimuli. Because of their varied architectures and tunable responsiveness to a range of physical and chemical stimuli, polymers hold particular promise in the generation of such “materials that compute”. Here, we present a photopolymer cuboid that autonomously performs pattern recognition and transfer, volumetric encoding and binary arithmetic with incandescent beams. The material’s nonlinear response to incident beams generates one, two or three mutually orthogonal ensembles of white-light filaments, which respectively self-organize into disordered, 1-D and 2-D periodic geometries. Data input as binary (dark-bright) strings generate a unique distribution of filament geometries, which corresponds to the result of a specific operation. The working principles of this material that computes with light is transferrable to other nonlinear systems and incoherent sources including light emitting diodes.
Some next-generation computing may be based in physical systems that respond directly and reciprocally to environmental stimuli. Here, the authors describe a photoresponsive material that autonomously performs computations with incident beams of incoherent white light.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer