It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Non-volatile memory (NVM) will play a very important role in the next-generation digital technologies, including the Internet of things. The metal-oxide memristors, especially based on HfO2, have been favored by lots of researchers because of its simple structure, high integration, fast operation speed, low power consumption, and high compatibility with advanced (complementary metal oxide silicon) CMOS technologies. In this paper, a 20-level stable resistance states Al-doped HfO2-based memristor is presented. Its cycles endurance, data retention time, and resistance ratio are larger than 103, > 104 s, and > 10, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer