Abstract

We systematically propose a thin shell-type acoustic metasurface, which could be used to design a carpet cloak that closely covers an arc-shaped object, therefore providing the necessary support for hiding an object with any arbitrary shape. To facilitate the experimental measurement, however, the work here starts with some rotary spherical shell-type and ellipsoidal shell-type cell structures. The measured and calculated sound transmission loss (STL) results of these structures suggest that the sound insulation performances of the shell-type structure are quite different from those of the plate-type structure, indicating a possible break in the shape of the classical sound insulation curve. Considering also that cylindrical shell structures are more widely used in practice than the rotary shell structures, a number of two-dimensional bilayer cylindrical and elliptic cylindrical shell structures were, therefore, designed in this assay. Due to the asymmetry of the structure, the shell-type cells could exhibit bianisotropic sound absorption, reflection and effective parameters. Furthermore, the stiffness of the thin shell structure changed nonlinearly with the changing of the radius of curvature, with a wing shape tendency. In addition, a bilayer cylindrical shell-type acoustic metasurface and an arc-shaped carpet acoustic cloak were successively designed, wherein the phased compensation of differently shaped cell structures could be adjusted by means of a new engineering iso-phase design method. This work could provide the necessary guidance to extend existing results in the field of membrane- and plate-type acoustic metamaterials for shell-type structures, and the realization of the arc-shaped cloak could provide support for the design of a carpet acoustical cloak for use with arbitrary shapes.

Details

Title
Shell-type acoustic metasurface and arc-shape carpet cloak
Author
Ma Fuyin 1 ; Xu Yicai 1 ; Wu Jiu Hui 1 

 Xi’an Jiaotong University, School of Mechanical Engineering & State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2232646617
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.