It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Human antigen R (HuR) is a member of the Hu family of RNA-binding proteins and is involved in many physiological processes. Obesity, as a worldwide healthcare problem, has attracted more and more attention. To investigate the role of adipose HuR, we generate adipose-specific HuR knockout (HuRAKO) mice. As compared with control mice, HuRAKO mice show obesity when induced with a high-fat diet, along with insulin resistance, glucose intolerance, hypercholesterolemia and increased inflammation in adipose tissue. The obesity of HuRAKO mice is attributed to adipocyte hypertrophy in white adipose tissue due to decreased expression of adipose triglyceride lipase (ATGL). HuR positively regulates ATGL expression by promoting the mRNA stability and translation of ATGL. Consistently, the expression of HuR in adipose tissue is reduced in obese humans. This study suggests that adipose HuR may be a critical regulator of ATGL expression and lipolysis and thereby controls obesity and metabolic syndrome.
Human antigen R (HuR) is a RNA-binding protein. Here the authors investigate its role in adipose tissue and find that it protects mice from diet-induced obesity, prevents adipocyte hypertrophy, and promotes lipolysis, which may at least in part be due to HuR-dependent ATGL mRNA stability regulation demonstrated in-vitro.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Jinan, China (GRID:grid.452402.5)
2 Qilu Hospital of Shandong University, Department of Traditional Chinese Integrated Western Medicine, Jinan, China (GRID:grid.452402.5)
3 Qilu Hospital of Shandong University, Department of General Surgery, Jinan, China (GRID:grid.452402.5)
4 Hubei University of Science and Technology, School of Pharmacy, Xianning, China (GRID:grid.470508.e) (ISNI:0000 0004 1757 4174)
5 Qilu Hospital of Shandong University, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Jinan, China (GRID:grid.452402.5); Hubei University of Science and Technology, School of Pharmacy, Xianning, China (GRID:grid.470508.e) (ISNI:0000 0004 1757 4174)