It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An ideal anti-counterfeiting technique has to be inexpensive, mass-producible, nondestructive, unclonable and convenient for authentication. Although many anti-counterfeiting technologies have been developed, very few of them fulfill all the above requirements. Here we report a non-destructive, inkjet-printable, artificial intelligence (AI)-decodable and unclonable security label. The stochastic pinning points at the three-phase contact line of the ink droplets is crucial for the successful inkjet printing of the unclonable security labels. Upon the solvent evaporation, the three-phase contact lines are pinned around the pinning points, where the quantum dots in the ink droplets deposited on, forming physically unclonable flower-like patterns. By utilizing the RGB emission quantum dots, full-color fluorescence security labels can be produced. A convenient and reliable AI-based authentication strategy is developed, allowing for the fast authentication of the covert, unclonable flower-like dot patterns with different sharpness, brightness, rotations, amplifications and the mixture of these parameters.
Anti-counterfeiting technologies should ideally be unclonable, yet simple to fabricate and decode. Here, the authors develop an inkjet-printable and unclonable security label based on random patterning of quantum dot inks, and accompany it with an artificial intelligence decoding mechanism capable of authenticating the patterns.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Fuzhou University, Institute of Optoelectronic Technology, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528)
2 Fuzhou University, College of Chemistry, Fuzhou, China (GRID:grid.411604.6) (ISNI:0000 0001 0130 6528)
3 Guangdong Poly Optoelectronics Co., Ltd, Jiangmen, China (GRID:grid.411604.6)
4 TCL Corporate Research, Shenzhen, China (GRID:grid.411604.6)