It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cortisol, a steroid hormone, is secreted by the hypothalamic-pituitary-adrenal system. It is a well-known biomarker of psychological stress and is hence known as the “stress hormone.” If cortisol overexpression is prolonged and repeated, dysfunction in the regulation of cortisol eventually occurs. Therefore, a rapid point-of-care assay to detect cortisol is needed. Salivary cortisol electrochemical analysis is a non-invasive method that is potentially useful in enabling rapid measurement of cortisol levels. In this study, multilayer films containing two-dimensional tin disulfide nanoflakes, cortisol antibody (C-Mab), and bovine serum albumin (BSA) were prepared on glassy carbon electrodes (GCE) as BSA/C-Mab/SnS2/GCE, and characterized using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochemical responses of the biosensor as a function of cortisol concentrations were determined using cyclic voltammetry and differential pulse voltammetry. This cortisol biosensor exhibited a detection range from 100 pM to 100 μM, a detection limit of 100 pM, and a sensitivity of 0.0103 mA/Mcm2 (R2 = 0.9979). Finally, cortisol concentrations in authentic saliva samples obtained using the developed electrochemical system correlated well with results obtained using enzyme-linked immunosorbent assays. This biosensor was successfully prepared and used for the electrochemical detection of salivary cortisol over physiological ranges, based on the specificity of antibody-antigen interactions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
2 Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming University, Taipei, Taiwan
3 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
4 Department of Neurosurgical Oncology, First Hospital, Jilin University, Changchun, China