Full Text

Turn on search term navigation

© 2019 Haun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cellular adaptations that occur during skeletal muscle hypertrophy in response to high-volume resistance training are not well-characterized. Therefore, we sought to explore how actin, myosin, sarcoplasmic protein, mitochondrial, and glycogen concentrations were altered in individuals that exhibited mean skeletal muscle fiber cross-sectional area (fCSA) hypertrophy following 6 weeks of high-volume resistance training. Thirty previously resistance-trained, college-aged males (mean ± standard deviation: 21±2 years, 5±3 training years) had vastus lateralis (VL) muscle biopsies obtained prior to training (PRE), at week 3 (W3), and at week 6 (W6). Muscle tissue from 15 subjects exhibiting PRE to W6 VL mean fCSA increases ranging from 320–1600 μm2 was further interrogated using various biochemical and histological assays as well as proteomic analysis. Seven of these individuals donated a VL biopsy after refraining from training 8 days following the last training session (W7) to determine how deloading affected biomarkers. The 15 fCSA hypertrophic responders experienced a +23% increase in mean fCSA from PRE to W6 (p<0.001) and, while muscle glycogen concentrations remained unaltered, citrate synthase activity levels decreased by 24% (p<0.001) suggesting mitochondrial volume decreased. Interestingly, repeated measures ANOVAs indicated that p-values approached statistical significance for both myosin and actin (p = 0.052 and p = 0.055, respectively), and forced post hoc tests indicated concentrations for both proteins decreased ~30% from PRE to W6 (p<0.05 for each target). Phalloidin-actin staining similarly revealed actin concentrations per fiber decreased from PRE to W6. Proteomic analysis of the sarcoplasmic fraction from PRE to W6 indicated 40 proteins were up-regulated (p<0.05), KEGG analysis indicated that the glycolysis/gluconeogenesis pathway was upregulated (FDR sig. <0.001), and DAVID indicated that the following functionally-annotated pathways were upregulated (FDR value <0.05): a) glycolysis (8 proteins), b) acetylation (23 proteins), c) gluconeogenesis (5 proteins) and d) cytoplasm (20 proteins). At W7, sarcoplasmic protein concentrations remained higher than PRE (+66%, p<0.05), and both actin and myosin concentrations remained lower than PRE (~-50%, p<0.05). These data suggest that short-term high-volume resistance training may: a) reduce muscle fiber actin and myosin protein concentrations in spite of increasing fCSA, and b) promote sarcoplasmic expansion coincident with a coordinated up-regulation of sarcoplasmic proteins involved in glycolysis and other metabolic processes related to ATP generation. Interestingly, these effects seem to persist up to 8 days following training.

Details

Title
Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy
Author
Haun, Cody T; Vann, Christopher G; Osburn, Shelby C; Mumford, Petey W; Roberson, Paul A; Romero, Matthew A; Fox, Carlton D; Johnson, Christopher A; Parry, Hailey A; Kavazis, Andreas N; Moon, Jordan R; Badisa, Veera L D; Mwashote, Benjamin M; Ibeanusi, Victor; Young, Kaelin C; Roberts, Michael D
First page
e0215267
Section
Research Article
Publication year
2019
Publication date
Jun 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2235657876
Copyright
© 2019 Haun et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.