It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
There is a strong need for procedures that enable context and application dependent validation of antibodies. Here, we applied a magnetic bead assisted workflow and immunoprecipitation mass spectrometry (IP-MS/MS) to assess antibody selectivity for the detection of proteins in human plasma. A resource was built on 414 IP experiments using 157 antibodies (targeting 120 unique proteins) in assays with heat-treated or untreated EDTA plasma. For each protein we determined their antibody related degrees of enrichment using z-scores and their frequencies of identification across all IP assays. Out of 1,313 unique endogenous proteins, 426 proteins (33%) were detected in >20% of IPs, and these background components were mainly comprised of proteins from the complement system. For 45% (70/157) of the tested antibodies, the expected target proteins were enriched (z-score ≥ 3). Among these 70 antibodies, 59 (84%) co-enriched other proteins beside the intended target and mainly due to sequence homology or protein abundance. We also detected protein interactions in plasma, and for IGFBP2 confirmed these using several antibodies and sandwich immunoassays. The protein enrichment data with plasma provide a very useful and yet lacking resource for the assessment of antibody selectivity. Our insights will contribute to a more informed use of affinity reagents for plasma proteomics assays.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 KTH - Royal Institute of Technology, Division of Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, Solna, Sweden (GRID:grid.5037.1) (ISNI:0000000121581746)
2 Science for Life Laboratory, Karolinska Institute, Cancer Proteomics, Department of Oncology-Pathology, Solna, Sweden (GRID:grid.4714.6) (ISNI:0000 0004 1937 0626)
3 Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden (GRID:grid.8993.b) (ISNI:0000 0004 1936 9457)