Full Text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Magnetic core–shell nanocarriers have been attracting growing interest owing to their physicochemical and structural properties. The main principles of magnetic nanoparticles (MNPs) are localized treatment and stability under the effect of external magnetic fields. Furthermore, these MNPs can be coated or functionalized to gain a responsive property to a specific trigger, such as pH, heat, or even enzymes. Current investigations have been focused on the employment of this concept in cancer therapies. The evaluation of magnetic core–shell materials includes their magnetization properties, toxicity, and efficacy in drug uptake and release. This review discusses some categories of magnetic core–shell drug carriers based on Fe2O3 and Fe3O4 as the core, and different shells such as poly(lactic-co-glycolic acid), poly(vinylpyrrolidone), chitosan, silica, calcium silicate, metal, and lipids. In addition, the review addresses their recent potential applications for cancer treatment.

Details

Title
A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems
Author
Albinali, Kholoud E; Zagho, Moustafa M; Deng, Yonghui; Elzatahry, Ahmed A
Pages
1707-1723
Section
Review
Publication year
2019
Publication date
2019
Publisher
Taylor & Francis Ltd.
ISSN
1176-9114
e-ISSN
1178-2013
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2238648181
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.