Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Introduction: Although oral administration of Bifidobacterium is a promising approach for diseases, lack of resistance to harsh conditions and real-time tracking in gastrointestinal system in vivo are still major challenges in basic research and clinical applications.

Materials and methods: In this study, we fabricated a chitosan-coated alginate microcapsule loaded with in situ synthesized barium sulfate (CA/BaSO4 microcapsule) for oral Bifidobacterium delivery and real-time X-ray computed tomography (CT) imaging. CA/BaSO4 microcapsules containing the Bifidobacterium were prepared in situ by one-step electrostatic spraying method, and then coated with chitosan.

Results: The results indicated that CA/BaSO4 microcapsules with an average diameter of approximately 200 µm possessed favorable mechanical stability and X-ray attenuation capacity. Encapsulation of Bifidobacteria in the CA/BaSO4 microcapsules exhibited superior resistance to cryopreservation and gastric acid environment in vitro. After oral administration in mice, these CA/BaSO4 microcapsules could be real-time visualized by CT imaging and readily reached the intestine to release Bifidobacteria.

Conclusion: The radiopaque CA/BaSO4microcapsules provide a novel platform for efficient protection, non-invasive real-time monitoring and intestinal-targeted Bifidobacterium delivery.

Details

Title
In situ fabrication of radiopaque microcapsules for oral delivery and real-time gastrointestinal tracking of Bifidobacterium
Author
Fang, Zhengzou; Jiang, Rong; Zhang, Lirong; Wu, Yunchao; Zhao, Xuefen; Zhao, Lulu; Li, Jiangang; Zou, Shengqiang; Zhang, Miaomiao; Du, Fengyi
Pages
4093-4105
Section
Original Research
Publication year
2018
Publication date
2018
Publisher
Taylor & Francis Ltd.
ISSN
1176-9114
e-ISSN
1178-2013
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2238731021
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.