Full text

Turn on search term navigation

Copyright © 2019 Yong Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Kinematics of a free-floating space-robot system is a fundamental and complex subject. Problems at the position level, however, are not considered sufficiently because of the nonholonomic property of the system. Current methods cannot handle these problems simply and efficiently. A novel and systematical modeling approach is provided; forward and inverse kinematics at the position level are deduced based on the product of exponentials (POE) formula and conservation of linear momentum. The whole deduction process is concise and clear. More importantly, inertial tensor parameters are not introduced. Then, three situations with different known variables are mainly studied. Due to the complexity of inverse kinematical equations, a numerical method is proposed based on Newton’s iteration method. Two calculation examples are given, a dual-arm planar model and a single-arm spatial model; both forward and inverse kinematical solutions are given, while inverse kinematical results are compared with simulation results of Adams. The results indicate that the proposed methods are quite accurate and efficient.

Details

Title
Kinematical Research of Free-Floating Space-Robot System at Position Level Based on Screw Theory
Author
Wang, Yong 1   VIAFID ORCID Logo  ; Liang, Xiaojun 2 ; Gong, Kejie 1   VIAFID ORCID Logo  ; Liao, Ying 1   VIAFID ORCID Logo 

 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan Province 410000, China 
 Beijing Jingdong Shangke Information Technology Co. Ltd., Beijing 100176, China 
Editor
Paolo Gasbarri
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16875966
e-ISSN
16875974
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2241310694
Copyright
Copyright © 2019 Yong Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/