Abstract

Germline genome defense evolves to recognize and suppress retrotransposons. One of defensive mechanisms is the PIWI-associated RNA (piRNA) pathway, which employs small RNAs for sequence-specific post-transcriptional and transcriptional repression. The loss of the piRNA pathway in mice causes male sterility while females remain fertile. Unlike spermatogenic cells, mouse oocytes have also RNA interference (RNAi), another small RNA pathway capable of retrotransposon suppression. To examine whether RNAi compensates the loss of the piRNA pathway in mouse oocytes, we produced a new RNAi pathway mutant DicerSOM and crossed it with a catalytically-dead mutant of Mili, an essential piRNA gene. Normal follicular and oocyte in double mutants showed that RNAi does not suppress a strong piRNA knock-out phenotype. However, we observed redundant and non-redundant targeting of specific retrotransposons. Intracisternal A Particle retrotransposon was mainly targeted by the piRNA pathway, MT and RLTR10 retrotransposons were targeted mainly by RNAi. Importantly, only double mutants showed increased background levels of transcripts potentially originating from intact LINE-1 elements. Our results thus show that while both small RNA pathways are simultaneously expendable defense pathways for ovarian oocyte development, yet another transcriptional silencing mechanism must mediate LINE-1 repression in female germ cells.

Details

Title
Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes
Author
Taborska, Eliska; Pasulka, Josef; Malik, Radek; Horvat, Filip; Jenickova, Irena; Zoe Jelic Matosevic; Svoboda, Petr
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2019
Publication date
Jun 20, 2019
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2243867772
Copyright
© 2019. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.