It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sulforaphane (SFN), an isothiocyanate compound that is formed in the breakdown process of cruciferous vegetables, has demonstrated the ability to interfere with dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. The present study investigated whether SFN can protect cells exhibiting persistent mitochondrial fission induced by nitrosative stress (S- nitrosoglutathione; GSNO), and shed light on the mechanism by which this occurs. Results show that SFN (5 μM) prevents decreases in the rate of mitochondrial oxidative phosphorylation (ATP production) in SH-SY5Y neuroblastoma cells treated with 200-600 μM GSNO, which was associated with significant improvements in cell viability at all doses. Based upon the understood activation mechanism of Drp1, we further explored the possibility that SFN interferes with phosphorylation of Drp1 at serine residue 616 (pDrp1-Ser616). Indeed, SFN significantly reduced GSNO-mediated increases in pDrp1-Ser616, suggesting a possible mechanism of cytoprotection. However, due to the various reported targets of SFN, it remains unclear if SFN interferes directly with Drp1 phosphorylation or with other targets upstream of this event.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer