This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Research and application of new energy resources are essential approaches to reduce dependence on fossil fuels, and solar energy is considered one of the feasible solutions to solve the world’s energy crisis. Dye-sensitized solar cells (DSCs) have promised to replace conventional silicon-based solar cells in the context of using clean solar energy due to their low cost, massive production, and facile process. Thus, DSC technology has been an attractive approach for the large-scale solar panel [1–5]. In DSCs, the cell architecture comprises nanostructured TiO2 photoanode as an electron conductor, a dye Ru-complex as a light absorber, a redox shuttle for dye regeneration, and a counter electrode to collect electrons and reduce positive charges generated through the cell [1]. Commonly, the DSCs showed efficient solar energy-to-electricity conversion of 10% [1, 6].
Many approaches have been studied to alternately improve the conversion efficiency of DSCs, including researching the novel counter electrode, electrolytes, dyes, and semiconductor photoanode materials. Among these, the photoanode plays a decisive part in determining the performance of cells [1, 7–9]. Many semiconductor materials have been studied to be used as photoanode in DSCs such as TiO2, ZnO, SnO2, Nb2O3, and SrTiO3. In particular, TiO2 has been universally used due to its chemical stability, excellent charge transport capability, low cost, and easy preparation [2, 10, 11]. In DSCs, TiO2 plays three roles: (i) providing a substrate for dye adsorption, (ii) accepting electrons from the dye’s excited state, and (iii) transporting the electrons from conduction band of TiO2 to the conducting substrate then to the external circuit [11, 12]. TiO2 possesses a wide bandgap energy in both common structures: anatase at 3.2 eV and rutile at 3.0 eV. To improve the solar energy-to-electricity conversion efficiency, the surface of TiO2 are modified with metallic ions such as Fe3+ and Zn2+, alternatively, metallic nanoparticles such as Au, Ag, and Pt [3, 9, 10, 13, 14]. Study incorporation of Ag nanoparticles onto TiO2 surface showed that the coupling of semiconductor and metal nanoparticles might yield a photoinduced electron transfer across the interface, which in turn may lead to the increased energy conversion efficiency of DSCs [11, 15–17]. Most of the previous reports showed the enhancement of efficiencies (4.86%) due to the plasmonic effect of Ag nanoparticles at high content (>2.5%) [8]. Many methods have been reported to prepare Ag-TiO2 composite such as microwave-assisted sol–gel techniques [18], a microwave-hydrothermal technique [19], and UV irradiation [20]. Gamma irradiation has been well known as an effective method due to its simple preparation, massive produce, high efficiency, and eco-friendliness [14, 16, 21].
In this work, we prepared nano-Ag-TiO2 composites at low Ag content (<1%) via Co-60 gamma irradiation. The nano-Ag-TiO2 composites were used to prepare the photoanodes for DSCs. The role of Ag on the photoperformance of DSCs were investigated by the current-voltage method and the electrochemical impedance spectroscopy.
2. Experimental
2.1. Materials
TiO2 (P25, Degussa), AgNO3 (99.9%, Sigma-Aldrich), two types of ethyl cellulose (EC) powders (5-15 mPa⋅s and 30-50 mPa⋅s, Sigma-Aldrich), ethanol (95%, Sigma-Aldrich), and terpineol (anhydrous 99.9%, Sigma-Aldrich) were commercially available. Fluorine-doped tin oxide (FTO-TEX-8X,
2.2. Preparation of Nano-Ag-TiO2 Composites
4.00 g TiO2 was dispersed in 20 mL solution of ethanol and distilled water (1/1,
Table 1
Preparation of Ag-TiO2 samples by gamma irradiation.
Sample | Ratio of Ag : TiO2 (% weight) | Dose | ||
---|---|---|---|---|
0.25 Ag-TiO2 | 9.3 | 4.0 | 0.25 | 13.7 |
0.50 Ag-TiO2 | 18.5 | 4.0 | 0.50 | 20.4 |
0.75 Ag-TiO2 | 27.8 | 4.0 | 0.75 | 27.3 |
2.3. Fabrication of DSCs
DSCs (an active area of 0.2 cm2) were assembled following our process in previous reports with four steps [22–24].
2.3.1. Ag-TiO2 Printing Paste Preparation
The Ag-TiO2 printing paste is composed of Ag-TiO2 (20% wt.), ethyl celluloses (10% wt.), and terpinol (70% wt.). 4.50 g EC (5-15 mPa⋅s) and 3.50 g EC (30-50 mPa⋅s) was dissolved in absolute ethanol to form 10% EC solution. 0.40 g nano-Ag-TiO2 composites and 1.40 g terpineol were added to 2.00 g EC solution. The mixture was sonicated in three steps, each for 30 minutes. The final solution was heated in a vacuum oven at 40°C for 10 hours to remove the ethanol and water.
2.3.2. Photoanode Ag-TiO2 Preparation
The FTO glass, as a current collector, was first cleaned in a detergent solution via ultrasonic for 15 minutes, and then rinsed with distilled water and ethanol. The FTO glass was soaked into a 40 mM TiCl4 solution at 70°C for 30 minutes and re-washed with distilled water and ethanol. The Ag-TiO2 paste with a thickness of 12-14 μm was coated on FTO substrate by using screen-printed method. After screen-printing, these coated electrodes were heated at 500°C under airflow for 30 minutes to form the Ag-TiO2 photoanode.
2.3.3. Platinum Cathode Preparation
The FTO glass was treated in 0.1 M HCl in ethanol in an ultrasonic bath for 15 minutes and washed with acetone. The platinum cathode on the FTO substrate (Pt/FTO) was prepared by the screen-printing method using platinum paste PT1. The cathode Pt/FTO was annealed at 450°C for 30 minutes.
2.3.4. DSC Assembly
Both electrodes were arranged into sandwich-type cells by using a ply of melted surlyn at 190°C for 30 seconds. The dye solution (10 mM N719 in DMF) was injected successively into the cells through a hole in the back of platinum cathode, soaking in 4 hours and removing the DMF solvent. The cell was cleaned with acetonitrile for three times before being injected with electrolyte. The hole was then scaled using a quick-drying adhesive. The DSC assembly was performed in a nitrogen-filled glove-box to avoid oxygen and water.
2.4. Structural Characterization
The crystalline structures of nano-Ag-TiO2 composites were characterized by X-ray diffractometer D8 Advanced (Bruker, Germany) with a copper anode (
2.5.
The photovoltaic characteristics (
3. Results and Discussion
3.1. Structural Characterization of Nano-Ag-TiO2 Composites
Figure 1 illustrates the XRD patterns of commercial TiO2 (Degussa P25) and nano-Ag-TiO2 composites. All diffraction peaks can be indexed in the anatase phase (Tetragonal, space group I41/amd) and rutile phase (Tetragonal, space group P42/mnm). Structural conservation of TiO2 indicates that the
Figure 2 exhibits the TEM images of the nano 0.75 Ag-TiO2 composite. We observed the well-defined TiO2 nanoparticles (bright color) in the range 10-25 nm and the nano-Ag (dark color) on the background of TiO2 particles. The EDS pattern of 0.75 Ag-TiO2 (Figure 3) composite powder confirms the existence of Ag on the composite.
[figures omitted; refer to PDF]
[figure omitted; refer to PDF]Figure 4(a) shows the UV-vis spectra of the samples in powder. We observed that the band-edge absorption of nano-Ag-TiO2 composites shifted towards the red wavelength (redshift) and the plasmon resonance effect of the silver nanoparticles appeared in the range of wavelength 500-550 nm. The results verified the formation of nano-Ag on TiO2 by the gamma Co-60 irradiation. Based on the Kubelka-Munk plot, the bandgap energy (
[figures omitted; refer to PDF]
Table 2
Bandgap energy (
Bandgap (eV) | ||
---|---|---|
As-prepared nano-Ag-TiO2 composites | Ag-TiO2 photoanode films | |
TiO2 | 3.1 | 3.1 |
0.25 Ag-TiO2 | 3.1 | 3.1 |
0.50 Ag-TiO2 | 3.0 | 3.1 |
0.75 Ag-TiO2 | 2.8 | 3.1 |
Following the fabricating process of photoanodes, nano-Ag-TiO2 composites were calcinated at 500°C for 30 minutes. We keep track of the photoproperties of photoanodes, with the UV-vis spectra visible in Figure 4(b). The UV-vis spectra of photoanodes in Ag-TiO2 changed significantly. The disappearing of the plasmonic effect in nanosize, as well as the blueshift, was observed due to the agglomeration of Ag nanoparticles after the annealing process. The calculated bandgap of the four photoanodes was approximated in 3.1 eV. Many researches indicated the role of plasmon resonance effect of Ag nanoparticles to increase the performance of DSCs [11, 16, 19, 25]. The lack of plasmonic effect of low Ag content was detailed in DSCs Performance section.
3.2. DSCs Performances
We fabricated the DSCs using nano-Ag-TiO2 composites as well as TiO2-P25 as the photoanode and studied the photoperformance under the 1000 W/m2 intensity light. The DSCs’ performances’ results were gathered in Figure 5 and Table 3. The DSCs assembled from TiO2-P25 photoanode receive a short-circuit current (
Table 3
Performance parameters of DSCs based on photoanodes nano-Ag-TiO2 and TiO2-P25.
Sample | FF | |||
---|---|---|---|---|
TiO2 | 0.77 | 8.12 | 0.67 | 3.75 |
0.25 Ag-TiO2 | 0.79 | 8.90 | 0.67 | 4.83 |
0.50 Ag-TiO2 | 0.79 | 9.25 | 0.67 | 4.88 |
0.75 Ag-TiO2 | 0.77 | 9.56 | 0.64 | 4.86 |
To clarify the role of Ag-TiO2 photoanodes on the photoefficiency of DSCs, the electrochemical impedance spectroscopy (EIS) was performed at the
[figures omitted; refer to PDF]
Table 4
Cathode charge transfer resistances (
Sample | |||||
---|---|---|---|---|---|
TiO2 | 2.9 | 43.1 | 210 | 7.4 | 37.3 |
0.25 Ag-TiO2 | 4.1 | 36.5 | 233 | 7.6 | 37.3 |
0.50 Ag-TiO2 | 4.5 | 36.6 | 230 | 7.2 | 37.3 |
0.75 Ag-TiO2 | 3.7 | 36.5 | 235 | 6.7 | 37.3 |
At high frequencies, we observed a negligible variation of electron transfer resistance (
4. Conclusions
In conclusion, we demonstrate the direct preparation of nano-Ag-TiO2 composites by the
Conflicts of Interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Acknowledgments
This research work was supported by Vietnam National University Ho Chi Minh City through grant number HS2015-18-01.
[1] B. O’Regan, M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353 no. 6346, pp. 737-740, DOI: 10.1038/353737a0, 1991.
[2] T. Ma, M. Akiyama, E. Abe, I. Imai, "High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode," Nano Letters, vol. 5 no. 12, pp. 2543-2547, DOI: 10.1021/nl051885l, 2005.
[3] X. Lü, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu, S. Huang, "Improved-rerformance dye-sensitized solar cells using Nb-doped TiO 2 electrodes: efficient electron injection and transfer," Advanced Functional Materials, vol. 20 no. 3, pp. 509-515, DOI: 10.1002/adfm.200901292, 2010.
[4] Y. F. Wang, J. H. Zeng, Y. Li, "Silver/titania nanocable as fast electron transport channel for dye-sensitized solar cells," Electrochimica Acta, vol. 87, pp. 256-260, DOI: 10.1016/j.electacta.2012.10.016, 2013.
[5] R. Mori, T. Ueta, K. Sakai, Y. Niida, Y. Koshiba, L. Lei, K. Nakamae, Y. Ueda, "Organic solvent based TiO 2 dispersion paste for dye-sensitized solar cells prepared by industrial production level procedure," Journal of Materials Science, vol. 46 no. 5, pp. 1341-1350, DOI: 10.1007/s10853-010-4925-2, 2011.
[6] M. Grätzel, "Dye-sensitized solar cells," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4 no. 2, pp. 145-153, DOI: 10.1016/S1389-5567(03)00026-1, 2003.
[7] Y. Li, M. Ma, W. Chen, L. Li, M. Zen, "Preparation of Ag-doped TiO 2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations," Materials Chemistry and Physics, vol. 129 no. 1-2, pp. 501-505, DOI: 10.1016/j.matchemphys.2011.04.055, 2011.
[8] S. P. Lim, A. Pandikumar, N. M. Huang, H. N. Lim, "Enhanced photovoltaic performance of silver@titania plasmonic photoanode in dye-sensitized solar cells," RSC Advances, vol. 4 no. 72, pp. 38111-38118, DOI: 10.1039/C4RA05689B, 2014.
[9] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, "Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%," Thin Solid Films, vol. 516 no. 14, pp. 4613-4619, DOI: 10.1016/j.tsf.2007.05.090, 2008.
[10] Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, Y. Lin, "Sn-doped TiO 2 photoanode for dye-sensitized solar cells," Journal of Physical Chemistry C, vol. 116 no. 16, pp. 8888-8893, DOI: 10.1021/jp212517k, 2012.
[11] W. Peng, Y. Zeng, H. Gong, Y. Leng, Y. Yan, W. Hu, "Silver-coated TiO 2 electrodes for high performance dye-sensitized solar cells," Solid-State Electronics, vol. 89, pp. 116-119, DOI: 10.1016/j.sse.2013.07.011, 2013.
[12] E. Schüler, A.-K. Gustavsson, S. Hertenberger, K. Sattler, "Solar photocatalytic and electrokinetic studies of TiO 2 /Ag nanoparticle suspensions," Solar Energy, vol. 96, pp. 220-226, DOI: 10.1016/j.solener.2013.07.026, 2013.
[13] E. Grabowska, A. Zaleska, S. Sorgues, M. Kunst, A. Etcheberry, C. Colbeau-Justin, H. Remita, "Modification of titanium(IV) dioxide with small silver nanoparticles: application in photocatalysis," Journal of Physical Chemistry C, vol. 117 no. 4, pp. 1955-1962, DOI: 10.1021/jp3112183, 2013.
[14] T. Harifi, M. Montazer, "Fe 3+ :Ag/TiO 2 nanocomposite: synthesis, characterization and photocatalytic activity under UV and visible light irradiation," Applied Catalysis A: General, vol. 473, pp. 104-115, DOI: 10.1016/j.apcata.2014.01.005, 2014.
[15] H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, G. Will, "High-performance TiO 2 photoanode with an efficient electron transport network for dye-sensitized solar cells," Journal of Physical Chemistry C, vol. 113 no. 36, pp. 16277-16282, DOI: 10.1021/jp9041974, 2009.
[16] H. Zhang, G. Wang, D. Chen, X. Lv, J. Li, "Tuning photoelectrochemical performances of Ag-TiO 2 nanocomposites via reduction/oxidation of Ag," Chemistry of Materials, vol. 20 no. 20, pp. 6543-6549, DOI: 10.1021/cm801796q, 2008.
[17] P. V. Kamat, "Manipulation of charge transfer across semiconductor interface. A criterion that cannot be ignored in photocatalyst design," Journal of Physical Chemistry Letters, vol. 3 no. 5, pp. 663-672, DOI: 10.1021/jz201629p, 2012.
[18] W. Tongon, C. Chawengkijwanich, S. Chiarakorn, "Visible light responsive Ag/TiO 2 /MCM-41 nanocomposite films synthesized by a microwave assisted sol–gel technique," Superlattices and Microstructures, vol. 69, pp. 108-121, DOI: 10.1016/j.spmi.2014.02.003, 2014.
[19] Q. Xiang, J. Yu, B. Cheng, H. C. Ong, "Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO 2 nanocomposite hollow spheres," Chemistry - An Asian Journal, vol. 5,DOI: 10.1002/asia.200900695, 2010.
[20] F. Hossein-Babaei, M. M. Lajvardi, F. A. Boroumand, "Large area Ag–TiO 2 UV radiation sensor fabricated on a thermally oxidized titanium chip," Sensors and Actuators A: Physical, vol. 173 no. 1, pp. 116-121, DOI: 10.1016/j.sna.2011.10.028, 2012.
[21] O. Tahiri Alaoui, A. Herissan, C. Le Quoc, M. e. M. Zekri, S. Sorgues, H. Remita, C. Colbeau-Justin, "Elaboration, charge-carrier lifetimes and activity of Pd-TiO 2 photocatalysts obtained by gamma radiolysis," Journal of Photochemistry and Photobiology A: Chemistry, vol. 242, pp. 34-43, DOI: 10.1016/j.jphotochem.2012.05.030, 2012.
[22] T. H. Nguyen, H. M. Tran, T. P. T. Nguyen, "Application of electrochemical impedance spectroscopy in characterization of mass- and charge transfer processes in dye-sensitized solar cells," ECS Transactions, vol. 50 no. 51, pp. 49-58, DOI: 10.1149/05051.0049ecst, 2013.
[23] T. H. Thanh, Q. V. Lam, T. H. Nguyen, T. D. Huynh, "Performance of CdS/CdSe/ZnS quantum dot-sensitized TiO 2 mesopores for solar cells," Chinese Optics Letters, vol. 11 no. 7, pp. 072501-072504, DOI: 10.3788/COL201311.072501, 2013.
[24] N. V. Le, H. T. Nguyen, H. V. Le, T. T. P. Nguyen, "Lead sulfide cathode for quantum dot solar cells: electrosynthesis and characterization," Journal of Electronic Materials, vol. 46 no. 1, pp. 274-281, DOI: 10.1007/s11664-016-4844-3, 2017.
[25] S. P. Lim, Y. S. Lim, A. Pandikumar, H. N. Lim, Y. H. Ng, R. Ramaraj, D. C. S. Bien, O. K. Abou-Zied, N. M. Huang, "Gold–silver@TiO 2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells," Physical Chemistry Chemical Physics, vol. 19 no. 2, pp. 1395-1407, DOI: 10.1039/C6CP05950C, 2017.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 Le Thanh Nguyen Huynh et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/
Abstract
Nano-silver-titanium dioxide (Ag-TiO2) composites were prepared from commercial TiO2 (P25, Degussa) and silver nitrate (AgNO3) by gamma Co-60 irradiation method with various initial concentrations of AgNO3. The nano-AgTiO2 composites are utilized as the photoanode for dye-sensitized solar cells (DSCs). Under full sunlight illumination (1000 W/m2, AM 1.5), the efficiency of DSCs has improved significantly despite the Ag content of below 1%. The DSC—assembled with 0.75 Ag-TiO2 (0.75% Ag) photoanode—showed that the photocurrent was significantly enhanced from 8.1 mA.cm−2 to 9.5 mA.cm−2 compared to the DSCs using bared TiO2 photoanode. The unchanged open-circuit voltage resulted in the overall energy conversion efficiency to be increased by 25% from 3.75% to 4.86%. Electrochemical impedance spectroscopy (EIS) analysis showed that the charge transfer resistance is reduced when increasing Ag content, demonstrating that the charge transfer at TiO2/dye interface was enhanced in the presence of silver nanoparticles.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Physical Chemistry, Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City, Vietnam; Applied Physical Chemistry Laboratory, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
2 Faculty of Materials Science and Technology, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
3 Department of Physical Chemistry, Faculty of Chemistry, VNUHCM-University of Science, Ho Chi Minh City, Vietnam
4 Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute (VAEI), Ho Chi Minh City, Vietnam