Abstract

Alzheimer’s disease is one of the most common neurodegenerative disorders in elder population. The β-site amyloid cleavage enzyme 1 (BACE1) is the major constituent of amyloid plaques and plays a central role in this brain pathogenesis, thus it constitutes an auspicious pharmacological target for its treatment. In this paper, a QSAR model for identification of potential inhibitors of BACE1 protein is designed by using classification methods. For building this model, a database with 215 molecules collected from different sources has been assembled. This dataset contains diverse compounds with different scaffolds and physical-chemical properties, covering a wide chemical space in the drug-like range. The most distinctive aspect of the applied QSAR strategy is the combination of hybridization with backward elimination of models, which contributes to improve the quality of the final QSAR model. Another relevant step is the visual analysis of the molecular descriptors that allows guaranteeing the absence of information redundancy in the model. The QSAR model performances have been assessed by traditional metrics, and the final proposed model has low cardinality, and reaches a high percentage of chemical compounds correctly classified.

Details

Title
QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer’s Disease
Author
Ponzoni, Ignacio 1   VIAFID ORCID Logo  ; Sebastián-Pérez, Víctor 2 ; Martínez, María J 1 ; Roca, Carlos 3 ; Carlos De la Cruz Pérez 3 ; Cravero, Fiorella 4 ; Vazquez, Gustavo E 5 ; Páez, Juan A 6 ; Díaz, Mónica F 7   VIAFID ORCID Logo  ; Campillo, Nuria E 3 

 Instituto de Ciencias e Ingeniería de la Computación (UNS-CONICET), Bahía Blanca, Argentina; Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur, Bahía Blanca, Argentina 
 Instituto de Ciencias e Ingeniería de la Computación (UNS-CONICET), Bahía Blanca, Argentina; Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain 
 Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain 
 Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina 
 Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Montevideo, Uruguay 
 Instituto de Química Médica. Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain 
 Planta Piloto de Ingeniería Química – PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina; Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina 
Pages
1-13
Publication year
2019
Publication date
Jun 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2246225302
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.