It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Understanding how brain dynamics change with dual cognitive and motor tasks can improve our knowledge of human neurophysiology. The primary goals of this study were to: (1) assess the feasibility of extracting electrocortical signals from scalp EEG while performing sustained, physically demanding dual-task walking and (2) test hypotheses about how the P300 event-related potential is affected by walking physical exertion. Participants walked on a treadmill for an hour either carrying an empty rucksack or one filled with 40% of their body weight. During the walking conditions and during a seated control condition, subjects periodically performed a visual oddball task. We recorded scalp EEG and examined electrocortical dynamics time-locked to the target stimulus. Channel-level event-related potential analysis demonstrated that it is feasible to extract reliable signals during long duration loaded walking. P300 amplitude was reduced during loaded walking versus seated, but there was no effect of time on task. Source level activity and frequency analysis revealed that sensorimotor, parietal, and cingulate brain areas all contributed to the reduced P300 amplitude during dual-task walking. We interpret the results as supporting a prioritization of cortical resources for walking, leading to fewer resources being directed toward the oddball task during dual-task locomotion.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD, United States
2 Cyber, Science & Technology Department, Naval Information Warfare Center Pacific, San Diego, CA, United States
3 Human Research and Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD, United States; Warfighter Effectiveness Research Center, Dept. of Behavioral Sciences and Leadership, United States Air Force Academy, CO, United States
4 J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States