Full text

Turn on search term navigation

© 2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rockburst is a common dynamic disaster in deep underground engineering. To accurately predict rockburst intensity grade, this study proposes a novel rockburst prediction model based on variable weight and matter-element extension theory. In the proposed model, variable weight theory is used to optimize the weights of prediction indexes. Matter-element extension theory and grade variable method are used to calculate the grade variable interval corresponding to the classification standard of rockburst intensity grade. The rockburst intensity grade of Engineering Rock Mass is predicted by rock burst intensity level variable and the interval. Finally, the model is tested by predicting the rockburst intensity grades of worldwide several projects. The prediction results are compared with the actual rockburst intensity grades and the prediction results of other models. The results indicate that, after using variable weight theory and grade variable method, the correct rate of prediction results of matter-element extension model is improved, and the safety of the prediction results is also enhanced. This study provides a new way to predict rock burst in underground engineering.

Details

Title
A prediction model on rockburst intensity grade based on variable weight and matter-element extension
Author
Chen, Jianhong; Chen, Yi; Yang, Shan; Zhong, Xudong; Xu, Han
First page
e0218525
Section
Research Article
Publication year
2019
Publication date
Jun 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2247707621
Copyright
© 2019 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.