Abstract

The estimation of traffic flow variables (flow, space mean speed and density) plays a fundamental role in highways planning and designing, as well as in traffic control strategies. Moving Observer Method (MOM) allows traffic surveys in a road, or in a road network. This paper proposes a novel automated procedure, called MOM-AP based on Moving Observer Method and Digital Image Processing (DIP) Technique able to automatically detect (without human observers) and calculate flow q, space mean speed vs and density k in case of stationary and homogeneous traffic conditions.

In order to evaluate how reliable is the MOM-AP, an experiment has been carried out in a segment of one two-lane single carriageway road, in Italy. 30 datasets for the segment have been collected (in total 30 round trips). A comparative analysis between MOM-AP and traditional MOM has been carried out. First results show that the current MOM-AP algorithms underestimate the local mean flow variable values of around 10%. Nowadays MOM-AP may be implemented in smartphone apps. Instead, in the near future, it is realistic expecting the increase in the use of automated procedures for calculating the traffic flow variables (based on the “moving observer method”), due to the amount of sensors and digital cameras employed in the new autonomous vehicles (AVs). Considering such technical advances, the MOM-AP is a feasible model for real-time traffic analyses of road networks.

Details

Title
Traffic Flow Variables Estimation: An Automated Procedure Based on Moving Observer Method. Potential Application for Autonomous Vehicles
Author
Guerrieri, Marco; Parla, Giuseppe; Mauro, Raffaele
Pages
205-214
Publication year
2019
Publication date
2019
Publisher
De Gruyter Poland
ISSN
14076160
e-ISSN
14076179
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2249133239
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.