Full text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure–function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high–resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto–parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.

Details

Title
Microstructural and functional gradients are increasingly dissociated in transmodal cortices
Author
Casey Paquola; Reinder Vos De Wael; Wagstyl, Konrad; Bethlehem, Richard A I; Seok-Jun, Hong; Seidlitz, Jakob; Bullmore, Edward T; Evans, Alan C; Misic, Bratislav; Margulies, Daniel S; Smallwood, Jonathan; Bernhardt, Boris C
First page
e3000284
Section
Research Article
Publication year
2019
Publication date
May 2019
Publisher
Public Library of Science
ISSN
15449173
e-ISSN
15457885
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2249981044
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.