Full text

Turn on search term navigation

© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The number of studies on the Internet of Things (IoT) has grown significantly in the past decade and has been applied in various fields. The IoT term sounds like it is specifically for computer science but it has actually been widely applied in the engineering field, especially in industrial applications, e.g., manufacturing processes. The number of published papers in the IoT has also increased significantly, addressing various applications. A particular application of the IoT in these industries has brought in a new term, the so-called Industrial IoT (IIoT). This paper concisely reviews the IoT from the perspective of industrial applications, in particular, the major pillars in order to build an IoT application, i.e., architectural and cloud computing. This enabled readers to understand the concept of the IIoT and to identify the starting point. A case study of the Amazon Web Services Machine Learning (AML) platform for the chamfer length prediction of deburring processes is presented. An experimental setup of the deburring process and steps that must be taken to apply AML practically are also presented.

Details

Title
An AWS Machine Learning-Based Indirect Monitoring Method for Deburring in Aerospace Industries Towards Industry 4.0
Author
Caesarendra, Wahyu; Pappachan, Bobby K; Wijaya, Tomi; Lee, Daryl; Tjahjowidodo, Tegoeh; Then, David; Manyar, Omey M
Publication year
2018
Publication date
Nov 2018
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2250338041
Copyright
© 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.