Full text

Turn on search term navigation

© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An improved photocatalytic microfiltration membrane was successfully prepared by the impregnation method with nitrogen-doped TiO2/graphene oxide (GO) (NTG). By utilizing the unique role of N and GO, the photocatalytic activity of the membrane in UV and sunlight was improved. Compared with the Polyvinylidene Fluoride (PVDF) microfiltration membrane which was modified by TiO2, N-TiO2 (NT) and TiO2-GO (TG), the NTG/PVDF membrane exhibited high photocatalytic efficiency and significantly improved photodegradation power to the methylene blue (MB) solution under ultraviolet light and sunlight, with the photocatalytic efficiency reaching 86.5% and 80.6%, respectively. Scanning electron microscopy (SEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the morphology, crystal structure and chemical bonds of the membrane surface. The hydrophilicity of the modified PVDF microfiltration membrane was significantly improved, the flux of the pure water membrane reached 1672 Lm−2h−1, the flux of the MB solution was also significantly improved due to photodegradation. Therefore, the nitrogen-doped titanium dioxide graphene oxide PVDF microfiltration membrane (NTG/PVDF membrane) has great development prospects in sustainable water treatment.

Details

Title
A Membrane Modified with Nitrogen-Doped TiO2/Graphene Oxide for Improved Photocatalytic Performance
Author
Li, Tingting; Gao, Yong; Zhou, Junwo; Zhang, Manying; Fu, Xiaofei; Liu, Fang
Publication year
2019
Publication date
Jan 2019
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2250571145
Copyright
© 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.