Full text

Turn on search term navigation

© 2018 Rohs et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cell elongation in rod-shaped bacteria is mediated by the Rod system, a conserved morphogenic complex that spatially controls cell wall assembly by the glycan polymerase RodA and crosslinking enzyme PBP2. Using Escherichia coli as a model system, we identified a PBP2 variant that promotes Rod system function when essential accessory components of the machinery are inactivated. This PBP2 variant hyperactivates cell wall synthesis in vivo and stimulates the activity of RodA-PBP2 complexes in vitro. Cells with the activated synthase also exhibited enhanced polymerization of the actin-like MreB component of the Rod system. Our results define an activation pathway governing Rod system function in which PBP2 conformation plays a central role in stimulating both glycan polymerization by its partner RodA and the formation of cytoskeletal filaments of MreB to orient cell wall assembly. In light of these results, previously isolated mutations that activate cytokinesis suggest that an analogous pathway may also control cell wall synthesis by the division machinery.

Details

Title
A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery
Author
Rohs, Patricia D A; Buss, Jackson; Sim, Sue I; Squyres, Georgia R; Srisuknimit, Veerasak; Smith, Mandy; Cho, Hongbaek; Sjodt, Megan; Kruse, Andrew C; Garner, Ethan C; Walker, Suzanne; Kahne, Daniel E; Bernhardt, Thomas G
First page
e1007726
Section
Research Article
Publication year
2018
Publication date
Oct 2018
Publisher
Public Library of Science
ISSN
15537390
e-ISSN
15537404
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2251021292
Copyright
© 2018 Rohs et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.