Full text

Turn on search term navigation

© 2018 Suman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, causes severe morbidity and mortality in afflicted individuals. About 30% of T. cruzi-infected individuals present with cardiac, gastrointestinal tract, and/or neurological disorders. Megacolon, one of the major pathologies of Chagas disease, is accompanied by gastrointestinal motility disorders. The molecular mechanism of T. cruzi-mediated megacolon in Chagas disease is currently unknown. To decipher the molecular mechanism of T. cruzi-induced alteration in the colon during the early infection phase, we exposed primary human colonic epithelial cells (HCoEpiC) to invasive T. cruzi trypomastigotes at multiple time points to determine changes in the phosphoprotein networks in the cells following infection using proteome profiler Human phospho-kinase arrays. We found significant changes in the phosphorylation pattern that can mediate cellular deregulations in colonic epithelial cells after infection. We detected a significant increase in the levels of phosphorylated heat shock protein (p-HSP) 27 and transcription factors that regulate various cellular functions, including c-Jun and CREB. Our study confirmed significant upregulation of phospho (p-) Akt S473, p-JNK, which may directly or indirectly modulate CREB and c-Jun phosphorylation, respectively. We also observed increased levels of phosphorylated CREB and c-Jun in the nucleus. Furthermore, we found that p-c-Jun and p-CREB co-localized in the nucleus at 180 minutes post infection, with a maximum Pearson correlation coefficient of 0.76±0.02. Increased p-c-Jun and p-CREB have been linked to inflammatory and profibrotic responses. T. cruzi infection of HCoEpiC induces an increased expression of thrombospondin-1 (TSP-1), which is fibrogenic at elevated levels. We also found that T. cruzi infection modulates the expression of NF-kB and JAK2-STAT1 signaling molecules which can increase pro-inflammatory flux. Bioinformatics analysis of the phosphoprotein networks derived using the phospho-protein data serves as a blueprint for T. cruzi-mediated cellular transformation of primary human colonic cells during the early phase of T. cruzi infection.

Details

Title
Phospho-proteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase
Author
Shankar Suman; Rachakonda, Girish; Mandape, Sammed N; Sakhare, Shruti S; Villalta, Fernando; Pratap, Siddharth; Lima, Maria F; Nde, Pius N
First page
e0006792
Section
Research Article
Publication year
2018
Publication date
Sep 2018
Publisher
Public Library of Science
ISSN
19352727
e-ISSN
19352735
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2252299568
Copyright
© 2018 Suman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.