It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Perovskite solar cells have shown a rapid increase of performance and overcome the threshold of 20% power conversion efficiency (PCE). The main issues hampering commercialization are the lack of deposition methods for large areas, missing long-term device stability and the toxicity of the commonly used Pb-based compounds. In this work, we present a novel chemical vapor deposition (CVD) process for Pb-free air-stable methylammonium bismuth iodide (MBI) layers, which enables large-area production employing close-coupled showerhead technology. We demonstrate the influence of precursor rates on the layer morphology as well as on the optical and crystallographic properties. The impact of substrate temperature and layer thickness on the morphology of MBI crystallites is discussed. We obtain smooth layers with lateral crystallite sizes up to 500 nm. Moreover, the application of CVD-processed MBI layers in non-inverted perovskite solar cells is presented.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Compound Semiconductor Technology, RWTH Aachen University, Aachen, Germany
2 Compound Semiconductor Technology, RWTH Aachen University, Aachen, Germany; AIXTRON SE, Herzogenrath, Germany
3 APEVA SE, Herzogenrath, Germany