Full text

Turn on search term navigation

Copyright © 2019 Yan-Yan Meng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Oxidative stress and cardiomyocyte apoptosis play critical roles in the development of doxorubicin- (DOX-) induced cardiotoxicity. Our previous study found that geniposide (GE) could inhibit cardiac oxidative stress and apoptosis of cardiomyocytes but its role in DOX-induced heart injury remains unknown. Our study is aimed at investigating whether GE could protect against DOX-induced heart injury. The mice were subjected to a single intraperitoneal injection of DOX (15 mg/kg) to induce cardiomyopathy model. To explore the protective effects, GE was orally given for 10 days. The morphological examination and biochemical analysis were used to evaluate the effects of GE. H9C2 cells were used to verify the protective role of GE in vitro. GE treatment alleviated heart dysfunction and attenuated cardiac oxidative stress and cell loss induced by DOX in vivo and in vitro. GE could activate AMP-activated protein kinase α (AMPKα) in vivo and in vitro. Moreover, inhibition of AMPKα could abolish the protective effects of GE against DOX-induced oxidative stress and apoptosis. GE could protect against DOX-induced heart injury via activation of AMPKα. GE has therapeutic potential for the treatment of DOX cardiotoxicity.

Details

Title
Protection against Doxorubicin-Induced Cytotoxicity by Geniposide Involves AMPKα Signaling Pathway
Author
Yan-Yan, Meng 1 ; Yu-Pei, Yuan 1 ; Zhang, Xin 1 ; Chun-Yan, Kong 1   VIAFID ORCID Logo  ; Song, Peng 1 ; Zhen-Guo, Ma 1   VIAFID ORCID Logo  ; Qi-Zhu, Tang 1   VIAFID ORCID Logo 

 Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China 
Editor
Lynette K Rogers
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
19420900
e-ISSN
19420994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2253094931
Copyright
Copyright © 2019 Yan-Yan Meng et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/