It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Past statistical studies demonstrating the likelihood of slow blood flow in most ruptured aneurysms have suggested that thrombogenesis plays an important role in ruptures of cerebral artery aneurysms. In the authors’ previous study, it was reported that the degree of platelet aggregation in an aneurysm had a signifi cant correlation with the flow pattern in the aneurysmal dome. It is, therefore, crucial to investigate flow structures in various different aneurysms in order to understand better the relationship between thrombogenesis and ruptures. In this study, patterns of blood fl ow in three models of cerebral artery bifurcation aneurysms were numerically analysed and compared to discern the likelihood of platelet aggregation. The three model aneurysms had comparable aspect ratios (depth/neck width) but one model was larger in volume than the other two. Experimentally captured images of visualised flow in one of the three models were available and the calculated flow patterns in this model were seen to agree well with the images. Strong impingements of incoming main flows against aneurysmal necks were observed in all models regardless of the bifurcation angle and direction of the aneurysmal protrusion. These impingements presumably caused haemolysis, with ADP originating from haemolysed red blood cells inducing platelet aggregation. Dispersion of flow paths was observed only in the largest model and, consequently, fluid motion was slower than in the other two models. Thus, platelet aggregation was considered to be more active in the largest model. Validity of this discussion was confi rmed by application of a platelet aggregation model, which had been proposed in the authors’ previous study. It was concluded that the volume of the aneurysmal dome had a signifi cant infl uence on formation of a low-speed region, which is held to be responsible for active platelet aggregation. Geometric features such as the bifurcation angle and direction of aneurysmal protrusion are considered to be secondary factors contributing to active platelet aggregation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer