It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A biomimetic study of the bombardier beetle’s explosive discharge apparatus was undertaken using numerical (CFD) modelling, first, of the beetle’s combustion chamber, and then of a scaled-up combustion chamber with a view to its application to devices such as gas turbine relighters. The new findings about the existence of a pressure release valve at the beetle’s combustion chamber exit yield a clearer understanding of the physics of the beetle’s mass ejection mechanism. The scaled-up chamber (about 1cm in length) is modelled by considering the chamber to be filled with liquid hexane which then undergoes vapour explosion through a pressure release valve at the exit. The ejection of vaporised fuel at high exit velocities has a number of applications, including gas turbine igniters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer