Abstract

Water, methane, and ammonia are commonly considered to be the key components of the interiors of Uranus and Neptune. Modelling the planets’ internal structure, evolution, and dynamo heavily relies on the properties of the complex mixtures with uncertain exact composition in their deep interiors. Therefore, characterising icy mixtures with varying composition at planetary conditions of several hundred gigapascal and a few thousand Kelvin is crucial to improve our understanding of the ice giants. In this work, pure water, a water-ethanol mixture, and a water-ethanol-ammonia “synthetic planetary mixture” (SPM) have been compressed through laser-driven decaying shocks along their principal Hugoniot curves up to 270, 280, and 260 GPa, respectively. Measured temperatures spanned from 4000 to 25000 K, just above the coldest predicted adiabatic Uranus and Neptune profiles (3000–4000 K) but more similar to those predicted by more recent models including a thermal boundary layer (7000–14000 K). The experiments were performed at the GEKKO XII and LULI2000 laser facilities using standard optical diagnostics (Doppler velocimetry and optical pyrometry) to measure the thermodynamic state and the shock-front reflectivity at two different wavelengths. The results show that water and the mixtures undergo a similar compression path under single shock loading in agreement with Density Functional Theory Molecular Dynamics (DFT-MD) calculations using the Linear Mixing Approximation (LMA). On the contrary, their shock-front reflectivities behave differently by what concerns both the onset pressures and the saturation values, with possible impact on planetary dynamos.

Details

Title
Laser-driven shock compression of “synthetic planetary mixtures” of water, ethanol, and ammonia
Author
Guarguaglini, M 1   VIAFID ORCID Logo  ; J-A Hernandez 1 ; Okuchi, T 2   VIAFID ORCID Logo  ; Barroso, P 3 ; Benuzzi-Mounaix, A 1 ; Bethkenhagen, M 4   VIAFID ORCID Logo  ; Bolis, R 1   VIAFID ORCID Logo  ; Brambrink, E 1 ; French, M 4 ; Fujimoto, Y 5 ; Kodama, R 6 ; Koenig, M 7 ; Lefevre, F 8 ; Miyanishi, K 9   VIAFID ORCID Logo  ; Ozaki, N 10 ; Redmer, R 4 ; Sano, T 9   VIAFID ORCID Logo  ; Umeda, Y 5 ; Vinci, T 1 ; Ravasio, A 1 

 LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, Palaiseau cedex, France; Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d’utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, Paris cedex 05, France 
 Institute for Planetary Materials, Okayama University, Tottori, Japan 
 GEPI, Observatoire de Paris, PSL Université, CNRS, Paris, France 
 Universität Rostock, Institut für Physik, Rostock, Germany 
 Graduate School of Engineering, Osaka University, Osaka, Japan 
 Graduate School of Engineering, Osaka University, Osaka, Japan; Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Institute of Laser Engineering, Osaka University, Osaka, Japan 
 LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, Palaiseau cedex, France; Sorbonne Université, Faculté des Sciences et Ingénierie, Laboratoire d’utilisation des lasers intenses (LULI), Campus Pierre et Marie Curie, Paris cedex 05, France; Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan 
 LULI, CNRS, CEA, École Polytechnique, Institut Polytechnique de Paris, Palaiseau cedex, France 
 Institute of Laser Engineering, Osaka University, Osaka, Japan 
10  Graduate School of Engineering, Osaka University, Osaka, Japan; Institute of Laser Engineering, Osaka University, Osaka, Japan 
Pages
1-9
Publication year
2019
Publication date
Jul 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2256665735
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.