It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bacterial enteritis is the most important disease in lamb for breeding greatly affects the growth of animals. Changes in the community of intestinal flora can cause the disorder of the colonic environment induced diarrhea. This study aimed to investigate the relationship between the incidence of bacterial enteritis and the number of intestinal microbiome, then the prevalence of drug-resistant genes was detected. Fecal samples were collected at five fattening sheep farms with different incidence of bacterial enteritis, pathogenic bacteria were isolated and identified, drug sensitivity tests were performed. Then, changes in number and structure of intestinal flora were compared by 16S rDNA V3-V4 region high-throughput sequencing, and the ARGs were detected using high-throughput real-time PCR. Our results revealed that the microbial communities were positively correlated with the incidence of bacterial enteritis in different farms. Bacterial communities were higher in YJ (with highest incidence of diarrhea) than any other farms. However, the ARGs seemed not to be more affected by the incidence of bacterial enteritis, but one of the significant findings to emerge from this study is that MCR-1 and NDM are detected in manure. This study has provided an insight of the changes occurring in intestinal flora and AGRs in fattening sheep farms with diverse incidence of bacterial enteritis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
2 Liaoning Testing & Inspection Center for Quality & Safety of Veterinary Drugs, Feed and Livestock Products, Liaoning, China
3 Department of Basic Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China; The Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China