Abstract
Background & objectives: The amount of foetal haemoglobin that persists in adulthood affects the clinical severity of haemoglobinopathies including β-thalassaemia major and sickle cell anaemia (SCA). The present study was undertaken to analyse β-thalassaemia as well as SCA patients for the single nucleotide polymorphism (SNP), rs11886868 (T/C) in BCL11A gene and to evaluate the association between this polymorphism and severity of β-thalassaemia major and SCA. Methods: a total of 620 samples (420 β-thalassaemia major and 200 SCA cases) were analysed before blood transfusion using basic screening tests like complete blood analysis and osmotic fragility and further confirmed by high performance liquid chromatography (HPLC), amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) and reverse dot blot techniques. All patients were transfusion dependent. Patients with β-thalassaemia and SCA were classified into mild, moderate, severe according to the severity score based on Hb levels, age of onset, age at which patients received their first blood transfusion, the degree of growth retardation and splenectomy. β-thalassaemia as well as SCA patients were analysed for the SNP, rs11886868 (T/C) in BCL11A gene and association between this polymorphism and severity of β-thalassaemia major as well as SCA was evaluated. Results: There was a significant difference in genotypic and allelic frequencies of BCL11A gene polymorphism between mild and moderate and mild and severe cases in both the groups. A significant (P<0.001) difference was observed in the mean HbF levels between the three genotypes in different severity groups. HbF levels were found to be high in CC genotype bearing individuals followed by TC and TT in β-thalassaemia major as well as SCA. Interpretation & conclusions: This study confirms that the T/C variant (rs11886868) of the BCL11A gene causing downregulation of BCL11A gene expression in adult erythroid precursors results in the induction of HbF and ameliorates the severity of β-thalassaemia as well as SCA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad; Dr. NTR University of Health Sciences, Vijayawada
2 Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad
3 Thalassemia and Sickle Cell Society, Hyderabad
4 Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad; Centre for Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, Punjab