It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
An essential requirement for bio/chemical sensors and electronic nose systems is the ability to detect the intended target at room temperature with high selectivity. We report a reduced graphene oxide (rGO)-based gas sensor functionalized with a peptide receptor to detect dinitrotoluene (DNT), which is a byproduct of trinitrotoluene (TNT). We fabricated the multi-arrayed rGO sensor using spin coating and a standard microfabrication technique. Subsequently, the rGO was subjected to photolithography and an etching process, after which we prepared the DNT-specific binding peptide (DNT-bp, sequence: His-Pro-Asn-Phe-Se r-Lys-Tyr-IleLeu-HisGln-Arg-Cys) and DNT non-specific binding peptide (DNT-nbp, sequence: Thr-Ser-Met-Leu-Leu-Met-Ser-Pro-Lys-His-Gln-Ala-Cys). These two peptides were prepared to function as highly specific and highly non-specific (for the control experiment) peptide receptors, respectively. By detecting the differential signals between the DNT-bp and DNT-nbp functionalized rGO sensor, we demonstrated the ability of 2,4-dinitrotoluene (DNT) targets to bind to DNT-specific binding peptide surfaces, showing good sensitivity and selectivity. The advantage of using the differential signal is that it eliminates unwanted electrical noise and/or environmental effects. We achieved sensitivity of 27 ± 2 × 10−6 per part per billion (ppb) for the slope of resistance change versus DNT gas concentration of 80, 160, 240, 320, and 480 ppm, respectively. By sequentially flowing DNT vapor (320 ppb), acetone (100 ppm), toluene (1 ppm), and ethanol (100 ppm) onto the rGO sensors, the change in the signal of rGO in the presence of DNT gas is 6400 × 10−6 per ppb whereas the signals from the other gases show no changes, representing highly selective performance. Using this platform, we were also able to regenerate the surface by simply purging with N2.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Electrical Engineering, Kwangwoon University, Nowon, Seoul, South Korea
2 Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, South Korea