It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To understand the cooling aspect through natural convection in a cryogenic fluid interacting with a constant heat source, numerical simulations are carried out in a parallelepiped enclosure. The 3D form of N-S equations is solved to obtain the detailed flow features through path line profiles, isotherm contours and velocity vectors. The effect of heater aspect ratio (x/L) on the rate of heat transfer is studied in terms of the average Nusselt number (Nuave). The results indicate that effective heat transfer enhancement occurs for a small heater length, resulting in an efficient cooling. Increasing the heater length will favor heat transfer through conduction over convection. The maximum temperature difference across the fluid and the velocity magnitude are found to decrease with heater length. 3D and 2D results are in agreement for short heater lengths, but vary for higher heater lengths, presumably due to the essential effect of the heater width. Further analysis on different types of coolant reveals a constant correlation between Nuave and the Rayleigh number (Ra), with Nuave ~ Ra0.374. Benchmark validation for natural convection in a square enclosure is found to be satisfactory against the reported results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer