It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Characterisation of microbial communities increasingly involves use of high throughput sequencing methods (e.g. MiSeq Illumina) that amplify relatively short sequences of 16S rRNA or functional genes, the latter including ammonia monooxygenase subunit A (amoA), a key functional gene for ammonia oxidising bacteria (AOB) and archaea (AOA). The availability of these techniques, in combination with developments in phylogenetic methodology, provides the potential for better analysis of microbial niche specialisation. This study aimed to develop an approach for sequencing of bacterial and archaeal amoA genes amplified from soil using bioinformatics pipelines developed for general analysis of functional genes and employed sequence data to reassess phylogeny and niche specialisation in terrestrial bacterial ammonia oxidisers.
Results
amoA richness and community composition differed with bioinformatics approaches used but analysis of MiSeq sequences was reliable for both archaeal and bacterial amoA genes and was used for subsequent assessment of potential niche specialisation of soil bacteria ammonia oxidisers. Prior to ecological analysis, phylogenetic analysis of Nitrosospira, which dominates soil AOB, was revisited using a phylogenetic analysis of 16S rRNA and amoA genes in available AOB genomes. This analysis supported congruence between phylogenies of the two genes and increased previous phylogenetic resolution, providing support for additional gene clusters of potential ecological significance. Analysis of environmental sequences using these new sequencing, bioinformatics and phylogenetic approaches demonstrated, for the first time, similar niche specialisation in AOB to that in AOA, indicating pH as a key ecological factor controlling the composition of soil ammonia oxidiser communities.
Conclusions
This study presents the first bioinformatics pipeline for optimal analysis of Illumina MiSeq sequencing of a functional gene and is adaptable to any amplicon size (even genes larger than 500 bp). The pipeline was used to provide an up-to-date phylogenetic analysis of terrestrial betaproteobacterial amoA genes and to demonstrate the importance of soil pH for their niche specialisation and is broadly applicable to other ecosystems and diverse microbiomes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer