This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Removal of reduced nitrogen species from wastewater is conventionally carried out by means of nitrification and denitrification biological processes, where ammonia nitrogen (
Typically, denitrification relies on the oxidation of organic carbon by heterotrophic bacteria, and readily biodegradable carbon sources such as methanol, ethanol, and acetate, must be added externally to treatment plants [3]. Organic electron donors are expensive and have high biomass yields, leading to higher operational costs and sludge production [4]. Autotrophic denitrification is an alternative process for the reduction of nitrate or nitrite (
Under a thermodynamic point of view, the formation of redox intermediates could be predicted considering the Gibbs free energy (∆G) of the potential reactions, normalized to the number of moles of electrons (e-) transferred in such reactions, since the most energetically favorable reactions would be preferentially used by microorganisms [18]. Alternatively, to predict the reactions that can take place in a specific aqueous system, Scott and Morgan [17] proposed the use of a conservative parameter called oxidative capacity (OXC) which represents the total number of transferable electrons in a given system. This parameter is defined as the equivalent sum of all oxidants that can be reduced with a strong reductant to an equivalence point. At every equivalence point a particular electron condition defines a reference level of electrons. By using the OXC concept, the information about the chemical composition of the bulk liquid is condensed into a single descriptive parameter which can be easily calculated as
The objective of this research is to determine if the Gibbs free energy or the oxidative capacity are useful parameters to predict the possible accumulation of intermediate compounds during nitrification and autotrophic denitrification processes.
2. Materials and Methods
2.1. Experimental Data
The production of intermediate compounds in nitrification and autotrophic denitrification processes was analyzed using data from experimental bench-scale reactors. Measurements of N2O emissions in nitrification were those obtained by Campos et al. [9], during the operation of a nitrifying biofilm airlift suspended (BAS) reactor under different dissolved oxygen concentrations. The nitrifying BAS reactor was of 2.6 L, continuously fed with a synthetic medium containing 500 mg
Table 1
Summary of performed experiments of nitrification and autotrophic denitrification processes [9, 12] for the evaluation of the production of N2O, S0 and
Nitrification | pH | Temperature | | | | | DO tested | N2O-N production | ||
---|---|---|---|---|---|---|---|---|---|---|
( | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (g N2O-N/g VSS·d) | ||||
Stage 1 | 7.5 | 23 | 500 | 124 | 170 | 170 | 0.5 | 10.6 | ||
Stage 2 | 7.5 | 23 | 500 | 124 | 170 | 170 | 1.0 | 18.7 | ||
Stage 3 | 7.5 | 23 | 500 | 124 | 170 | 170 | 2.0 | 13.8 | ||
Stage 4 | 7.5 | 23 | 500 | 124 | 170 | 170 | 5.0 | 12.4 | ||
Stage 5 | 7.5 | 23 | 500 | 122 | 90 | 236 | 0.5 | 2.3 | ||
Stage 6 | 7.5 | 23 | 500 | 122 | 90 | 236 | 1.0 | 9.8 | ||
Stage 7 | 7.5 | 23 | 500 | 122 | 90 | 236 | 2.0 | 7.5 | ||
Stage 8 | 7.5 | 23 | 500 | 122 | 90 | 236 | 5.0 | 6.6 | ||
Stage 9 | 7.5 | 23 | 500 | 9 | 3 | 451 | 0.5 | 1.2 | ||
Stage 10 | 7.5 | 23 | 500 | 9 | 3 | 451 | 1.0 | 4.0 | ||
Stage 11 | 7.5 | 23 | 500 | 9 | 3 | 451 | 2.0 | 1.8 | ||
Stage 12 | 7.5 | 23 | 500 | 9 | 3 | 451 | 5.0 | 0.0 | ||
| ||||||||||
Autotrophic denitrification | pH | Temperature | | | | | | | | |
( | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg S0/g VSS⋅d) | (mg | ||
| ||||||||||
Stage 1 | 7.8 | 30 | 450 | 200 | - - | - - | - - | - - | - - | - - |
Stage 2 | 8.0 | 30 | 450 | 250 | 0.9 | 110 | 294 | 205 | 6.5 | 18.3 |
Stage 3 | 8.6 | 30 | 450 | 300 | 0.7 | 12 | 291 | 128 | 30.8 | 2.1 |
Stage 4 | 9.3 | 30 | 450 | 200 | 1.0 | 22 | 362 | 24 | 32.3 | 3.6 |
Stage 5 | 7.5 | 30 | 450 | 100 | - - | - - | - - | - - | - - | - - |
Stage 6 | 8.2 | 30 | 450 | 150 | 0.9 | 94 | 306 | 266 | -13.0 | 15.7 |
Stage 7 | 8.4 | 30 | 450 | 300 | 1.0 | 13 | 309 | 160 | 24.0 | 2.1 |
Stage 8 | 7.7 | 30 | 450 | 350 | 0.9 | 77 | 239 | 375 | -3.2 | 12.9 |
Stage 9 | 7.7 | 30 | 450 | 450 | 0.9 | 79 | 154 | 474 | -3.3 | 13.2 |
The accumulation of elemental sulfur and nitrite during autotrophic denitrification was studied using data from Fajardo et al. [12], for a denitrifying sequencing batch reactor (SBR) simultaneously removing nitrate and sulphide operated during 220 days. The SBR had a working volume of 1 L and was fed with a synthetic medium containing nitrate and sulphide (500 mg
2.2. Calculations
The reactions involved during the analyzed processes of ammonia oxidation and of autotrophic denitrification with sulphur compounds and related to the production of
Table 2
Reactions involved during ammonia oxidation and autotrophic denitrification processes, number of e- transferred and ∆G (kJ) for each reaction.
Process | Reaction | e- | ∆G (kJ) | |
---|---|---|---|---|
Partial nitrification | ||||
| ||||
(i) | | 6 | | |
(ii) | 2 | 8 | | |
| ||||
Autotrophic denitrification | ||||
| ||||
(iii) | 5 HS- + 2 | 10 | | |
(iv) | 5 HS- + 8 | 40 | | |
(v) | HS- + | 2 | | |
(vi) | HS- + 4 | 8 | | |
(vii) | 5 S + 6 | 30 | | |
(viii) | S + 3 | 6 | |
To determine the oxidative capacity for the different operating conditions, first, in order to make a “redox ladder” [17], the redox potential of each half reaction involved in ammonia oxidation and autotrophic denitrification was calculated as a function of pH (Table 3), using the experimental data summarized in Table 1. Table 4 shows that, for both nitrification and denitrification, the related redox potential values were similar for all the operational stages. A “redox ladder” was set using the calculated potentials (Figure 1). In the case of ammonia oxidation,
Table 3
Half reactions involved during ammonia oxidation and autotrophic denitrification written as reduction processes (
Process | Half reaction | |
---|---|---|
Partial nitrification | ||
| ||
1/4 O2 + H++ e- → 1/2 H2O | | |
1/8 N2O + 5/4 H++ e- → 1/8 H2O + 1/4 | | |
1/6 | | |
| ||
Autotrophic denitrification | ||
| ||
1/5 | | |
1/3 | | |
1/8 | | |
1/2 S + 1/2 H+ + e- → 1/2 HS- | |
Table 4
Nitrification | N2O reduction to | O2 reduction to H2O | | |
---|---|---|---|---|
(V) | (V) | (V) | ||
Stage 1 | 1.49 | 0.79 | 0.30 | |
Stage 2 | 1.49 | 0.79 | 0.30 | |
Stage 3 | 1.49 | 0.79 | 0.30 | |
Stage 4 | 1.49 | 0.79 | 0.30 | |
Stage 5 | 1.49 | 0.79 | 0.30 | |
Stage 6 | 1.49 | 0.79 | 0.30 | |
Stage 7 | 1.49 | 0.79 | 0.30 | |
Stage 8 | 1.49 | 0.79 | 0.30 | |
Stage 9 | 1.49 | 0.79 | 0.30 | |
Stage 10 | 1.49 | 0.79 | 0.30 | |
Stage 11 | 1.49 | 0.79 | 0.30 | |
Stage 12 | 1.49 | 0.79 | 0.30 | |
| ||||
Autotrophic denitrification | | | | S reduction to HS- |
(V) | (V) | (V) | (V) | |
| ||||
Stage 1 | 0.70 | -0.19 | -0.27 | -0.34 |
Stage 2 | 0.68 | -0.21 | -0.28 | -0.35 |
Stage 3 | 0.64 | -0.26 | -0.32 | -0.36 |
Stage 4 | 0.59 | -0.31 | -0.37 | -0.38 |
Stage 5 | 0.72 | -0.17 | -0.25 | -0.33 |
Stage 6 | 0.67 | -0.23 | -0.29 | -0.35 |
Stage 7 | 0.66 | -0.24 | -0.31 | -0.36 |
Stage 8 | 0.70 | -0.19 | -0.26 | -0.34 |
Stage 9 | 0.70 | -0.19 | -0.26 | -0.34 |
In order to obtain a specific rate of production intermediate compounds for each operational condition analyzed, the production of
2.3. Statistical Analyses
Simple linear regression analysis between the calculated OXC (explanatory variable) and the measured production of intermediate species (dependent variable) was performed using XLSTAT® software (Addinsoft, France). In order to evaluate the fitting of the regression models, regression characteristic (p-values and R2) and standardized residuals were studied. The confidence and prediction intervals were calculated by using the F distribution and analysis of variance (ANOVA) test. P‐value ≤ 0.05 was considered significant. A 95% prediction interval was determined, being the range in which one can expect any individual value to fall into 95% of the time.
3. Results and Discussion
3.1. Gibbs Free Energy
The calculation of the Gibbs free energy shows that, for all of the operational conditions tested in the nitrification experiments, oxidation of ammonia to nitrous oxide provides higher energy per mol of e- transferred to microorganisms than its oxidation to nitrite (Figure 2(a)). This fact could justify that nitrous oxide production was always detected although the predominant product was always nitrite (Table 1). The literature reports that N2O could be also generated during heterotrophic denitrification [9]. However, in this process, the energy available in the
[figures omitted; refer to PDF]
For the autotrophic denitrification experiments, according to the calculated Gibbs free energy (Figure 2(b)), the most thermodynamically favorable reactions are those where elemental sulfur is consumed (reactions (vii) and (viii) of Table 2), which would explain the consumption of this compound observed during the operational stages 6, 8, and 9 (Table 1). Nevertheless, according to the free energy calculations the least favorable reactions are those where elemental sulfur is the end product (reaction (iii) and (v) of Table 2). This fact that does not agree with the experimental results found during stages 2, 3, 4, and 7 where S0 accumulation was observed. On the other hand, despite the fact that the reduction of nitrate into nitrogen gas provides more energy than its reduction to nitrite (Figure 2(b)),
According to Seto and Iwasa [22], the behavior of chemotrophic microorganisms under anaerobic conditions is affected by the low level of energy available from redox reactions and, therefore, it would be expected that Gibbs free energy per electron mol transferred (∆G/e-) was an appropriate parameter to predict the accumulation of intermediate products at least for autotrophic denitrification. Nevertheless, the discrepancies between experimental data and those obtained by the theoretical calculations indicate the opposite.
3.2. Oxidative Capacity
Analyses by linear regression showed significance and a strong to very strong relationship between the OXC of the bulk liquid and the production of intermediate compounds, in nitrification and autotrophic denitrification processes (Figure 3). In the case of nitrification, N2O specific production increases with the increase of the OXC of the bulk liquid (Figure 3(a), R2 = 0.704, p < 0.05). That is, N2O formation is promoted by both high DO and nitrite concentration. This agrees with the results of He et al. [23] who observed that N2O production was favored by high redox potential inside nitrifying biofilms. However, some studies reported that N2O formation decreased when the system was operated at high DO levels [24]. This cannot be attributed to the own effect of the dissolved oxygen but to the decrease of nitrite accumulation during the operation at high DO concentrations. In fact, Castro-Barros et al. [25] found an increase in the production of nitrous oxide at higher DO concentrations when nitrite was added to a nitrifying system. Moreover, high oxidative capacity and redox potential values are already reported in the literature as the most important parameters responsible for N2O production during nitrification in soils [4].
[figures omitted; refer to PDF]
In the case of autotrophic denitrification, sulphur generation seems to be promoted by less oxidative environments while the opposite trend is observed for nitrite (Figures 3(b) and 3(c), R2 = 0.791 and 0.929, p < 0.05). Generally, the formation of both intermediate compounds is related to the feeding S/N ratio: an excess of electron donor causes the accumulation of elemental sulphur while an excess of electron acceptor leads to the generation of nitrite [13, 14]. Nevertheless, this is not a valid criterion to predict the formation of intermediates since some studies showed that
The redox potential corresponds to the activity of the electrons present in the bulk liquid that influences the NAD+/NADH ratio within cells. This ratio controls gene expression and enzyme synthesis for the overall cell metabolic activities [29]. Therefore, it is reasonable to think that the redox potential value inside bioreactors can affect the metabolite generation and, therefore, the spectrum of products obtained depending on the extracellular redox conditions. In fact, electrofermentation is a novel technique that is being used to change the overall performance in mixed-culture fermentations, by altering both microbial community structure and metabolic patterns [30]. Also, electrochemical control of the redox potential in mixed culture bioreactors has been shown to regulate microbial metabolites production [31].
In summary, the results show that there is good agreement between calculated OXC values and the specific rate of production of nitrous oxide, elemental sulfur, and nitrite, as intermediate compounds in the analyzed nitrification and autotrophic denitrification systems. This suggests that the OXC calculation can be used to assess and predict the generation of these intermediate compounds.
4. Conclusions
The value of the Gibbs free energy calculated for the evaluated operational conditions cannot be used in order to predict the formation of nitrous oxide, elemental sulphur, and nitrite during nitrification and autotrophic denitrification processes. Nevertheless, the oxidative capacity of the bulk liquid appears as a useful tool to predict the accumulation of these intermediates. The oxidative capacity is a parameter simple to calculate and may provide a valuable starting point for the evaluation of the accumulation of undesirable intermediate compounds in wastewater treatment systems.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was funded by the Chilean Government through the project FONDECYT 1180650, CONICYT/FONDAP/15130015 and CONICYT PIA/BASAL FB0002, and by the Spanish Government through TREASURE [CTQ2017-83225-C2-1-R] and GRANDSEA [CTM2014-55397-JIN] projects. The authors from Universidade de Santiago de Compostela belong to CRETUS [AGRUP2015/02] and the Galician Competitive Research Group [GRC ED431C 2017/29]. All these programs are cofunded by FEDER.
[1] B. Halling-Sørensen, "Biological nitrification and denitrification," Studies in Environmental Science, vol. 54, pp. 43-53, DOI: 10.1016/S0166-1116(08)70524-7, 1993.
[2] Y.-H. Ahn, "Sustainable nitrogen elimination biotechnologies: a review," Process Biochemistry, vol. 41 no. 8, pp. 1709-1721, DOI: 10.1016/j.procbio.2006.03.033, 2006.
[3] R. Sierra-Alvarez, R. Beristain-Cardoso, M. Salazar, J. Gómez, E. Razo-Flores, J. A. Field, "Chemolithotrophic denitrification with elemental sulfur for groundwater treatment," Water Research, vol. 41 no. 6, pp. 1253-1262, DOI: 10.1016/j.watres.2006.12.039, 2007.
[4] B. Wang, J. Zhao, Z. Guo, J. Ma, H. Xu, Z. Jia, "Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils," The ISME Journal, vol. 9 no. 5, pp. 1062-1075, DOI: 10.1038/ismej.2014.194, 2015.
[5] M. Shao, T. Zhang, H. H. Fang, "Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications," Applied Microbiology and Biotechnology, vol. 88 no. 5, pp. 1027-1042, DOI: 10.1007/s00253-010-2847-1, 2010.
[6] G. Claus, H. Kutzner, "Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans," Applied Microbiology and Biotechnology, vol. 22 no. 4, pp. 283-288, DOI: 10.1007/BF00252031, 1985.
[7] S. Dasgupta, S. Wu, R. Goel, "Coupling autotrophic denitrification with partial nitritation-anammox (PNA) for efficient total inorganic nitrogen removal," Bioresource Technology, vol. 243, pp. 700-707, DOI: 10.1016/j.biortech.2017.06.130, 2017.
[8] P. Wunderlin, J. Mohn, A. Joss, L. Emmenegger, H. Siegrist, "Mechanisms of N 2 O production in biological wastewater treatment under nitrifying and denitrifying conditions," Water Research, vol. 46 no. 4, pp. 1027-1037, DOI: 10.1016/j.watres.2011.11.080, 2012.
[9] J. L. Campos, B. Arrojo, J. R. Vázquez-Padín, A. Mosquera-Corral, R. Méndez, "N 2 O production by nitrifying biomass under anoxic and aerobic conditions," Applied Biochemistry and Biotechnology, vol. 152 no. 2, pp. 189-198, DOI: 10.1007/s12010-008-8215-2, 2009.
[10] C. Liu, W. Li, X. Li, D. Zhao, B. Ma, Y. Wang, F. Liu, D. Lee, "Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor," Bioresource Technology, vol. 243, pp. 1237-1240, DOI: 10.1016/j.biortech.2017.07.030, 2017.
[11] B. Krishnakumar, V. Manilal, "Bacterial oxidation of sulphide under denitrifying conditions," Biotechnology Letters, vol. 21 no. 5, pp. 437-440, DOI: 10.1023/A:1005584920800, 1999.
[12] C. Fajardo, A. Mosquera-Corral, J. Campos, R. Méndez, "Autotrophic denitrification with sulphide in a sequencing batch reactor," Journal of Environmental Management, vol. 113, pp. 552-556, DOI: 10.1016/j.jenvman.2012.03.018, 2012.
[13] R. Yamamoto-Ikemoto, T. Komori, M. Nomura, Y. Ide, T. Matsukami, "Nitrogen removal from hydroponic culture wastewater by autotrophic denitrification using thiosulfate," Water Science and Technology, vol. 42 no. 3-4, pp. 369-376, 2000.
[14] I. Manconi, A. Carucci, P. Lens, "Combined removal of sulfur compounds and nitrate by autotrophic denitrification in bioaugmented activated sludge system," Biotechnology and Bioengineering, vol. 98 no. 3, pp. 551-560, DOI: 10.1002/bit.21383, 2007.
[15] P. Dolejs, L. Paclík, J. Maca, D. Pokorna, J. Zabranska, J. Bartacek, "Effect of S/N ratio on sulfide removal by autotrophic denitrification," Applied Microbiology and Biotechnology, vol. 99 no. 5, pp. 2383-2392, DOI: 10.1007/s00253-014-6140-6, 2015.
[16] C. Liu, D. Zhao, L. Yan, A. Wang, Y. Gu, D. Lee, "Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria," Bioresource Technology, vol. 191, pp. 332-336, DOI: 10.1016/j.biortech.2015.05.027, 2015.
[17] M. J. Scott, J. J. Morgan, "Energetics and conservative properties of redox systems," Chemical Modeling of Aqueous Systems II, vol. 416, pp. 368-378, DOI: 10.1021/bk-1990-0416.ch029, 1990.
[18] R. González-Cabaleiro, I. D. Ofiţeru, J. M. Lema, J. Rodríguez, "Microbial catabolic activities are naturally selected by metabolic energy harvest rate," The ISME Journal, vol. 9 no. 12, pp. 2630-2641, DOI: 10.1038/ismej.2015.69, 2015.
[19] D. Richardson, H. Felgate, N. Watmough, A. Thomson, E. Baggs, "Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key?," Trends in Biotechnology, vol. 27 no. 7, pp. 388-397, DOI: 10.1016/j.tibtech.2009.03.009, 2009.
[20] Y. Pan, B. Ni, P. L. Bond, L. Ye, Z. Yuan, "Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment," Water Research, vol. 47 no. 10, pp. 3273-3281, DOI: 10.1016/j.watres.2013.02.054, 2013.
[21] Y. Pan, L. Ye, B. Ni, Z. Yuan, "Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers," Water Research, vol. 46 no. 15, pp. 4832-4840, DOI: 10.1016/j.watres.2012.06.003, 2012.
[22] M. Seto, Y. Iwasa, "Population dynamics of chemotrophs in anaerobic conditions where the metabolic energy acquisition per redox reaction is limited," Journal of Theoretical Biology, vol. 467, pp. 164-173, DOI: 10.1016/j.jtbi.2019.01.037, 2019.
[23] Q. He, Y. Zhu, L. Fan, H. Ai, X. Huangfu, M. Chen, "Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory-scale biological aerated filter reactor," Water Science and Technology, vol. 75 no. 6, pp. 1270-1280, DOI: 10.2166/wst.2016.447, 2017.
[24] L. Peng, B. Ni, L. Ye, Z. Yuan, "The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge," Water Research, vol. 73, pp. 29-36, DOI: 10.1016/j.watres.2015.01.021, 2015.
[25] C. M. Castro-Barros, A. Rodríguez-Caballero, E. I. P. Volcke, M. Pijuan, "Effect of nitrite on the N 2 O and NO production on the nitrification of low-strength ammonium wastewater," Chemical Engineering Journal, vol. 287, pp. 269-276, DOI: 10.1016/j.cej.2015.10.121, 2016.
[26] W. Yang, H. Lu, S. K. Khanal, Q. Zhao, L. Meng, G. Chen, "Granulation of sulfur-oxidizing bacteria for autotrophic denitrification," Water Research, vol. 104, pp. 507-519, DOI: 10.1016/j.watres.2016.08.049, 2016.
[27] A. J. H. Janssen, S. Meijer, J. Bontsema, G. Lettinga, "Application of the redox potential for controlling a sulfide oxidizing bioreactor," Biotechnology and Bioengineering, vol. 60 no. 2, pp. 147-155, DOI: 10.1002/(SICI)1097-0290(19981020)60:2<147::AID-BIT2>3.0.CO;2-N, 1998.
[28] B. Krishnakumar, S. Majumdar, V. B. Manilal, A. Haridas, "Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR)," Water Research, vol. 39 no. 4, pp. 639-647, DOI: 10.1016/j.watres.2004.11.015, 2005.
[29] C. Liu, C. Xue, Y. Lin, F. Bai, "Redox potential control and applications in microaerobic and anaerobic fermentations," Biotechnology Advances, vol. 31 no. 2, pp. 257-265, DOI: 10.1016/j.biotechadv.2012.11.005, 2013.
[30] R. Moscoviz, E. Trably, N. Bernet, "Electro-fermentation triggering population selection in mixed-culture glycerol fermentation," Microbial Biotechnology, vol. 11 no. 1, pp. 74-83, DOI: 10.1111/1751-7915.12747, 2018.
[31] Y. Jiang, L. Lu, H. Wang, R. Shen, Z. Ge, D. Hou, X. Chen, P. Liang, X. Huang, Z. J. Ren, "Electrochemical control of redox potential arrests methanogenesis and regulates products in mixed culture electro-fermentation," ACS Sustainable Chemistry & Engineering, vol. 6 no. 7, pp. 8650-8658, DOI: 10.1021/acssuschemeng.8b00948, 2018.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2019 José Luis Campos et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Nitrification and sulfur-based autotrophic denitrification processes can be used to remove ammonia from wastewater in an economical way. However, under certain operational conditions, these processes accumulate intermediate compounds, such as elemental sulphur, nitrite, and nitrous oxide, that are noxious for the environment. In order to predict the generation of these compounds, an analysis based on the Gibbs free energy of the possible reactions and on the oxidative capacity of the bulk liquid was done on case study systems. Results indicate that the Gibbs free energy is not a useful parameter to predict the generation of intermediate products in nitrification and autotrophic denitrification processes. Nevertheless, we show that the specific productions of nitrous oxide during nitrification, and of elemental sulphur and nitrite during autotrophic denitrification, are well related to the oxidative capacity of the bulk liquid.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
2 Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
3 Department of Environment, Faculty of Engineering, University of Playa Ancha, Avenida Leopoldo Carvallo 270, 2340000 Valparaíso, Chile
4 Chemical and Environmental Engineering Department, Technical University Federico Santa María, Ave. España 1680, Valparaíso, Chile
5 Escuela de Ingeniería en Construcción, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso, Chile
6 Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, E-15705 Santiago de Compostela, Spain