It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Although cellular morphogenesis is an area of microbiology that is widely studied, very little is understood about the manner in which cells shape themselves or how they optimise their form to their environment. There exists an extensive literature on body shape, anatomy and life cycle of numerous single-celled micro-organisms including both prokaryotes and eukaryotes. However, with regards to morphology itself, there is a shortage of general empirical relationships to enable the interknitting of specific features that could lead to a biologically justifiable generic form. This paper comprises a concise review of the subject together with an assessment of the experimental approach which could be used, within an intended overall context of Engineering Design.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer