It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The two-dimensional deformation of immiscible drop in simple shear flow was investigated using the front tracking method. Interface particles were traced by Runge–Kutta 2nd order method and the boundary immersed method was used for calculation of surface tension force at the global mesh. Isothermal, incompressible and creeping flow was assumed. The main purpose of this research is to analyze the effect of viscosity ratio and elasticity on the drop deformation. Oldroyd-B model was used as a constitutive equation with stabilizing schemes such as DEVSS-G/SUPG and matrix logarithm. As for the Newtonian drop deformation in the Newtonian matrix, there was no breakup until Ca=1 when the viscosity ratio was one. And the damped oscillation was observed when the viscosity ratio was not unity. The effect of elasticity on the drop deformation was also investigated. As De increased, the drop was more deformed and orientation angle declined to the shear direction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer