Full Text

Turn on search term navigation

© 2019 Proix et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The apparent unpredictability of epileptic seizures has a major impact in the quality of life of people with pharmacologically resistant seizures. Here, we present initial results and a proof-of-concept of how focal seizures can be predicted early in advance based on intracortical signals recorded from small neocortical patches away from identified seizure onset areas. We show that machine learning algorithms can discriminate between interictal and preictal periods based on multiunit activity (i.e. thresholded action potential counts) and multi-frequency band local field potentials recorded via 4 X 4 mm2 microelectrode arrays. Microelectrode arrays were implanted in 5 patients undergoing neuromonitoring for resective surgery. Post-implant analysis revealed arrays were outside the seizure onset areas. Preictal periods were defined as the 1-hour period leading to a seizure. A 5-minute gap between the preictal period and the putative seizure onset was enforced to account for potential errors in the determination of actual seizure onset times. We used extreme gradient boosting and long short-term memory networks for prediction. Prediction accuracy based on the area under the receiver operating characteristic curves reached 90% for at least one feature type in each patient. Importantly, successful prediction could be achieved based exclusively on multiunit activity. This result indicates that preictal activity in the recorded neocortical patches involved not only subthreshold postsynaptic potentials, perhaps driven by the distal seizure onset areas, but also neuronal spiking in distal recurrent neocortical networks. Beyond the commonly identified seizure onset areas, our findings point to the engagement of large-scale neuronal networks in the neural dynamics building up toward a seizure. Our initial results obtained on currently available human intracortical microelectrode array recordings warrant new studies on larger datasets, and open new perspectives for seizure prediction and control by emphasizing the contribution of multiscale neural signals in large-scale neuronal networks.

Details

Title
Intracortical neural activity distal to seizure-onset-areas predicts human focal seizures
Author
Proix, Timothée; Aghagolzadeh, Mehdi; Madsen, Joseph R; Cosgrove, Rees; Eskandar, Emad; Hochberg, Leigh R; Cash, Sydney S; Wilson Truccolo
First page
e0211847
Section
Research Article
Publication year
2019
Publication date
Jul 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2262511130
Copyright
© 2019 Proix et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.