It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Quantifications of in-situ denudation rates on vertical headwalls, averaged over millennia, have been thwarted because of inaccessibility. Here, we benefit from a tunnel crossing a large and vertical headwall in the European Alps (Eiger), where we measured concentrations of in-situ cosmogenic 36Cl along five depth profiles linking the tunnel with the headwall surface. Isotopic concentrations of 36Cl are low in surface samples, but high at depth relative to expectance for their position. The results of Monte-Carlo modelling attribute this pattern to inherited nuclides, young minimum exposure ages and to fast average denudation rates during the last exposure. These rates are consistently high across the Eiger and range from 45 ± 9 cm kyr−1 to 356 ± 137 cm kyr−1 (1σ) for the last centuries to millennia. These high rates together with the large inheritance point to a mechanism where denudation has been accomplished by frequent, cm-scale rock fall paired with chemical dissolution of limestone.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Institute of Geological Sciences, University of Bern, Bern, Switzerland
2 Institute of Geological Sciences, University of Bern, Bern, Switzerland; Department of Geography, University of Zurich, Zurich, Switzerland
3 Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland