It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
To evaluate the optimal tracer uptake time, the minimal amount of radioactivity and the inter-observer agreement for 11C-choline positron emission tomography/computed tomography (PET/CT) in patients with primary hyperparathyroidism (pHPT).
Methods
Twenty-one patients with biochemically proven pHPT were retrospectively studied after injection of 6.3 ± 1.2 MBq/kg 11C-choline. PET data of the first nine patients, scanned for up to 60 min, were reconstructed in 10-min frames from 10- to 60-min postinjection (p.i.), mimicking varying 11C-choline uptake times. Parathyroid adenoma to background contrast ratios were calculated and compared, using standardized uptake values (SUVs). Data was reconstructed with varying scan durations (1, 2.5, 5, and 10 min) at 20–30-min p.i. (established optimal uptake time), mimicking less administered radioactivity. To establish the minimal required radioactivity, the SUVs in the shorter scan durations (1, 2.5, and 5 min) were compared to the 10-min scan duration to determine whether increased variability and/or statistical differences were observed. Four observers analyzed the 11C-choline PET/CT in four randomized rounds for all patients.
Results
SUVpeak of the adenoma decreased from 30 to 40 p.i. onwards. All adenoma/background contrast ratios did not differ from 20- to 30-min p.i. onwards. The SUVs of adenoma in the scan duration of 1, 2.5, and 5 min all differed significantly from the same SUV in the 10-min scan duration (all p = 0.012). However, the difference in absolute SUV adenoma values was well below 10% and therefore not considered clinically significant. The inter-observer analysis showed that the Fleiss’ kappa of the 1-min scan were classified as “moderate,” while these values were classified as “good” in the 2.5-, 5-, and 10-min scan duration. Observers scored lower certainty scores in the 1- and 2.5-min scans compared to the 5- and 10-min scan durations.
Conclusion
The optimal time to start PET/CT scanning in patients with pHPT is 20 min after mean injection of 6.3 MBq/kg 11C-choline, with a recommended scan duration of at least 5 min. Alternatively, the radioactivity dose can be lowered by 50% while keeping a 10-min scan duration without losing the accuracy of 11C-choline PET/CT interpretation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
2 Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
3 University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands
4 University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, The Netherlands; Department of Nuclear Medicine, Isala Hospital, Zwolle, The Netherlands
5 Department of Endocrinology, Jagiellonian University, Medical College, Krakow, Poland
6 Nuclear Medicine Unit, Department of Endocrinology, University Hospital, Krakow, Poland