Abstract
Background
This study aimed to determine the influence of soil traits, vegetation structure and climate on litterfall dynamics along a successional gradient in a tropical dry forest (TDF) in southeastern Brazil. We used a chronosequence design consisting of three successional stages (early, intermediate, and old-growth) defined based on forest age and vertical and horizontal structures.
Methods
Litterfall was recorded monthly for three years in 12 plots of 50 × 20 m (four plots per stage) where vegetation parameters (species richness, basal area, density and height for trees with diameter at breast height ≥ 5 cm) and soil chemical and physical traits were previously obtained. We placed eight 0.5-m2 litter traps in each plot, totalling 96 traps. Samples were sorted into leaves, twigs, reproductive parts, and debris.
Results
Litterfall mass was composed mainly of leaves and varied slightly among years (4 to 4.5 Mg∙ha− 1), within the range observed for other TDFs. Annual litterfall mass was higher at the old-growth forest than at the early and intermediate forest stages and this successional pattern was driven by vegetation characteristics (forest structural parameters and plant functional groups) and soil traits related to water-holding capacity. Litter amount in the intermediate stage was lower than expected for its forest structure (and similar to the early stage), possibly because its higher soil clay content increased the water holding capacity and leaf retention during the dry season. Seasonal variations in monthly litterfall were strongly driven by forest deciduousness and affected by climatic factors related to water availability. This pattern was consistent across the successional gradient, although differences for each litterfall component were observed.
Conclusions
Our results suggest that litter production in the studied TDF is influenced by multiple factors along succession, such as above-ground biomass and the degree of leaf retention mediated by soil water-holding capacity. Further studies on community phenological patterns can allow a better understanding of successional changes on litterfall and how fast this fundamental function recovers in secondary forests.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Departamento de Ciências Biológicas e da Saúde, Universidade Estadual de Montes Claros-Unimontes, Montes Claros, MG, Brazil
2 Colegiado de Ecologia, Universidade Federal do Vale do São Francisco-Univasf, Senhor do Bonfim, BA, Brazil
3 Earth and Atmospheric Sciences Department, University of Alberta, Edmonton, Alberta, Canada
4 Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, MG, Brazil