Abstract

The intracellular transport of cholesterol is subject to tight regulation. The structure of the lysosomal integral membrane protein type 2 (LIMP-2, also known as SCARB2) reveals a large cavity that traverses the molecule and resembles the cavity in SR-B1 that mediates lipid transfer. The detection of cholesterol within the LIMP-2 structure and the formation of cholesterollike inclusions in LIMP-2 knockout mice suggested the possibility that LIMP2 transports cholesterol in lysosomes. We present results of molecular modeling, crosslinking studies, microscale thermophoresis and cell-based assays that support a role of LIMP-2 in cholesterol transport. We show that the cavity in the luminal domain of LIMP-2 can bind and deliver exogenous cholesterol to the lysosomal membrane and later to lipid droplets. Depletion of LIMP-2 alters SREBP-2-mediated cholesterol regulation, as well as LDL-receptor levels. Our data indicate that LIMP-2 operates in parallel with Niemann Pick (NPC)-proteins, mediating a slower mode of lysosomal cholesterol export.

Details

Title
Lysosomal integral membrane protein-2 (LIMP-2/SCARB2) is involved in lysosomal cholesterol export
Author
Heybrock, Saskia 1 ; Kanerva, Kristiina 2   VIAFID ORCID Logo  ; Meng, Ying 3 ; Ing, Chris 4   VIAFID ORCID Logo  ; Liang, Anna 4 ; Zi-Jian Xiong 5 ; Weng, Xialian 3 ; Young Ah Kim 6 ; Collins, Richard 7 ; Trimble, William 8   VIAFID ORCID Logo  ; Pomès, Régis 4   VIAFID ORCID Logo  ; Privé, Gilbert G 9   VIAFID ORCID Logo  ; Annaert, Wim 10   VIAFID ORCID Logo  ; Schwake, Michael 11 ; Heeren, Joerg 12   VIAFID ORCID Logo  ; Lüllmann-Rauch, Renate 13 ; Grinstein, Sergio 14 ; Ikonen, Elina 2   VIAFID ORCID Logo  ; Saftig, Paul 1 ; Neculai, Dante 3   VIAFID ORCID Logo 

 Biochemisches Institut, Christian-Albrechts-Universität Kiel, Kiel, Germany 
 Faculty of Medicine, Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland 
 Department of Cell Biology, and Department of Pathology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China 
 Program in Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Canada 
 Department of Biochemistry, University of Toronto, Toronto, Canada 
 Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York, USA 
 Cell Biology Program, Hospital for Sick Children, Toronto, Canada 
 Department of Biochemistry, University of Toronto, Toronto, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada 
 Department of Biochemistry, University of Toronto, Toronto, Canada; Princes Margaret Cancer Centre, Toronto, ON, Canada 
10  Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, Leuven, Belgium 
11  Faculty of Chemistry, Biochemistry III, University of Bielefeld, Bielefeld, Germany; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA 
12  Institut für Biochemie und Molekulare Zellbiologie, Zentrum für Experimentelle Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg-Eppendorf, Germany 
13  Institut für Anatomie, Christian-Albrechts-Universität Kiel, Kiel, Germany 
14  Department of Biochemistry, University of Toronto, Toronto, Canada; Cell Biology Program, Hospital for Sick Children, Toronto, Canada 
Pages
1-12
Publication year
2019
Publication date
Aug 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2268790333
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.