Abstract

Despite decades of research, the mechanism of anesthetic-induced unconsciousness remains incompletely understood, with some advocating for a quantum mechanical basis. Despite associations between general anesthesia and changes in physical properties such as electron spin, there has been no empirical demonstration that general anesthetics are capable of functional quantum interactions. In this work, we studied the linear and non-linear optical properties of the halogenated ethers sevoflurane (SEVO) and isoflurane (ISO), using UV-Vis spectroscopy, time dependent-density functional theory (TD-DFT) calculations, classical two-photon spectroscopy, and entangled two-photon spectroscopy. We show that both of these halogenated ethers interact with pairs of 800 nm entangled photons while neither interact with 800 nm classical photons. By contrast, nonhalogenated diethyl ether does not interact with entangled photons. This is the first experimental evidence that halogenated anesthetics can directly undergo quantum interaction mechanisms, offering a new approach to understanding their physicochemical properties.

Details

Title
Modern Anesthetic Ethers Demonstrate Quantum Interactions with Entangled Photons
Author
Burdick, Ryan K 1 ; Villabona-Monsalve, Juan P 1 ; Mashour, George A 2 ; Goodson, Theodore, III 1 

 Department of Chemistry, University of Michigan, Ann Arbor, MI, USA 
 Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA 
Pages
1-9
Publication year
2019
Publication date
Aug 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2268791966
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.