It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cinnamon (CN) is known for its anti-diabetic activities in traditional medicine. CN extracts are reported to have beneficial effects on normal and impaired glucose tolerance, insulin resistance and type-2 diabetes. However, molecular characterization of cinnamon effects is limited. The aim of this study is to observe the effect of CN extract on certain diabetogenes involved in insulin signaling. Streptozotocin (STZ) induced type-2 diabetic rats were given CN extract for one month and its effect was observed on blood glucose levels, body weights and gene expression levels of protein tyrosine phosphatase-1B (PTP-1B), insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), protein kinase C-theta (PKCθ) and phosphoinositide-dependent protein kinase-1 (PDK1) in skeletal muscle and adipose tissue. Statistically significant difference was found in the glucose levels and body weights (p = <0.001; 0.002 respectively) of test and diabetic control groups. In muscle, statistically significant difference was observed in gene expression levels of PTP-1B, IRS-1, PKB, PDK1, PI3K and PKCθ (p = 0.03; <0.001; 0.02; 0.001; 0.01; <0.001 respectively) between test and diabetic control groups and PTP-1B, IRS-1, PKB, PDK1 and PKCθ (p = 0.01; 0.01; 0.03; 0.01; <0.001 respectively) between normal and diabetic control groups. In adipose tissue, statistically significant difference was found in gene expression levels of PTP-1B, PKCθ, IRS-1 (p = <0.001; 0.04; 0.01 respectively) between test and diabetic control groups and PTP-1B, PDK1, PI3K, PKCθ and IRS-1 (p = 0.002; 0.02; 0.02; 0.002; <0.001 respectively) between normal and diabetic control groups. These results suggest that cinnamon normalizes blood glucose level and body weight and affect certain molecular targets in the insulin signaling pathway and therefore, possess strong anti-diabetogenic and hypoglycemic action in HFD and STZ-induced type-2 diabetic rat model. The consistent and / or variable pattern of these genes in skeletal muscle and adipose tissue indicates that cinnamon acts differently by affecting some but not all of these genes and that their expressions are tissue specific. These findings may help to understand the possible molecular mechanism of action of cinnamon and to elucidate its precise role as an anti-diabetic herb.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer